Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2023, Volume 35, Issue 4, Pages 111–134 (Mi aa1875)  

Research Papers

Invariant subspaces of analytic perturbations

S. Das, J. Sarkar

Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India
References:
Abstract: A analytic perturbations are understood here as shifts of the form $M_z + F$, where $M_z$ is the unilateral shift and $F$ is a finite rank operator on the Hardy space over the open unit disk. Here the term "a shift" refers to the multiplication operator $M_z$ on some analytic reproducing kernel Hilbert space. In this paper, first, a natural class of finite rank operators is isolated for which the corresponding perturbations are analytic, and then a complete classification of invariant subspaces of those analytic perturbations is presented. Some instructive examples and several distinctive properties (like cyclicity, essential normality, hyponormality, etc.) of analytic perturbations are also described.
Keywords: Perturbations, reproducing kernels, shift operators, invariant subspaces, inner functions, Toeplitz operators, commutants.
Funding agency Grant number
NBHM NBHM/R.P.64/2014
Department of Science and Technology, India MTR/2017/000522
MTR/2017/000522
CRG/2019/000908
The research of the second-named author is supported in part by NBHM grant NBHM/R.P.64/2014, and the Mathematical Research Impact Centric Support (MATRICS) grant, File No. MTR/2017/000522 and Core Research Grant, File No. CRG/2019/000908, by the Science and Engineering Research Board (SERB), Department of Science & Technology (DST), Government of India.
Received: 18.10.2022
Document Type: Article
Language: English
Citation: S. Das, J. Sarkar, “Invariant subspaces of analytic perturbations”, Algebra i Analiz, 35:4 (2023), 111–134
Citation in format AMSBIB
\Bibitem{DasSar23}
\by S.~Das, J.~Sarkar
\paper Invariant subspaces of analytic perturbations
\jour Algebra i Analiz
\yr 2023
\vol 35
\issue 4
\pages 111--134
\mathnet{http://mi.mathnet.ru/aa1875}
Linking options:
  • https://www.mathnet.ru/eng/aa1875
  • https://www.mathnet.ru/eng/aa/v35/i4/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:81
    Full-text PDF :1
    References:16
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024