Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2023, Volume 35, Issue 3, Pages 44–51 (Mi aa1867)  

Research Papers

Weighted means and an analytic characterization of discs

N. G. Kuznetsov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: Weighted means are obtained for solutions of the two-dimensional Helmholtz and modified Helmholtz equations and also for harmonic functions. The presence of a logarithmic weight diminishes the coefficient in the last two mean value identities. A new theorem characterizing analytically discs in the Euclidean plane $\mathbb{R}^2$ is proved. The weighted mean value property of solutions to the modified Helmholtz equation is used for this purpose.
Keywords: disc, weighted mean value property, logarithmic weight, harmonic function, modified Helmholtz equation, analytic characterization.
Received: 22.09.2022
English version:
St. Petersburg Mathematical Journal, 2024, Volume 35, Issue 3, Pages 467–472
DOI: https://doi.org/10.1090/spmj/1813
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. G. Kuznetsov, “Weighted means and an analytic characterization of discs”, Algebra i Analiz, 35:3 (2023), 44–51; St. Petersburg Math. J., 35:3 (2024), 467–472
Citation in format AMSBIB
\Bibitem{Kuz23}
\by N.~G.~Kuznetsov
\paper Weighted means and an analytic characterization of discs
\jour Algebra i Analiz
\yr 2023
\vol 35
\issue 3
\pages 44--51
\mathnet{http://mi.mathnet.ru/aa1867}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=717386}
\transl
\jour St. Petersburg Math. J.
\yr 2024
\vol 35
\issue 3
\pages 467--472
\crossref{https://doi.org/10.1090/spmj/1813}
Linking options:
  • https://www.mathnet.ru/eng/aa1867
  • https://www.mathnet.ru/eng/aa/v35/i3/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024