Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2023, Volume 35, Issue 2, Pages 1–54 (Mi aa1858)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

On normalizers of maximal tori in classical Lie groups

A. A. Gerasimova, D. R. Lebedevba, S. V. Oblezinc

a Laboratory of Quantum Physics and Information, Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences
b Moscow Center for Continuous Mathematical Education
c School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
References:
Abstract: The normalizer $N_G(H_G)$ of a maximal torus $H_G$ in a semisimple complex Lie group $G$ does not in general allow a presentation as a semidirect product of $H_G$ and the corresponding Weyl group $W_G$. Such splitting holds for classical groups corresponding to the root systems $A_\ell$, $B_\ell$, $D_\ell$. For the remaining classical groups corresponding to the root systems $C_\ell$ there exists an embedding of the Tits extension of $W_G$ into the normalizer $N_G(H_G)$. We provide an explicit construction of the lifts of the Weyl groups into normalizers of maximal tori for classical Lie groups $GL_{\ell+1}$ and $O_{\ell+1}$ using embeddings into general linear Lie groups. This provides an explicit description of the normalizers $N_G(H_G)$ for the general linear and orthogonal Lie groups. For symplectic series of classical Lie groups we explain impossibility of embedding of the Weyl group into the symplectic group. We also provide explicit formulas for adjoint action of the lifts of the Weyl groups on $\mathfrak{g}={\rm Lie}(G)$ are given. Finally, some examples of the groups closely associated with classical Lie groups are considered.
Keywords: classical Lie groups, Weyl groups, normalizers of maximal tori.
Funding agency Grant number
Russian Science Foundation 16-11-10075
Engineering and Physical Sciences Research Council EP/L000865/1
Received: 01.03.2022
English version:
St. Petersburg Mathematical Journal, 2024, Volume 35, Issue 2, Pages 245–285
DOI: https://doi.org/10.1090/spmj/1804
Document Type: Article
Language: Russian
Citation: A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “On normalizers of maximal tori in classical Lie groups”, Algebra i Analiz, 35:2 (2023), 1–54; St. Petersburg Math. J., 35:2 (2024), 245–285
Citation in format AMSBIB
\Bibitem{GerLebObl23}
\by A.~A.~Gerasimov, D.~R.~Lebedev, S.~V.~Oblezin
\paper On normalizers of maximal tori in classical Lie groups
\jour Algebra i Analiz
\yr 2023
\vol 35
\issue 2
\pages 1--54
\mathnet{http://mi.mathnet.ru/aa1858}
\transl
\jour St. Petersburg Math. J.
\yr 2024
\vol 35
\issue 2
\pages 245--285
\crossref{https://doi.org/10.1090/spmj/1804}
Linking options:
  • https://www.mathnet.ru/eng/aa1858
  • https://www.mathnet.ru/eng/aa/v35/i2/p1
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :10
    References:29
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024