Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 6, Pages 135–169 (Mi aa1838)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

Triangulated categories of framed bispectra and framed motives

G. Garkushaa, I. Paninb

a Department of Mathematics, Swansea University, Fabian Way, Swansea SA1 8EN, UK
b St. Petersburg Branch of V. A. Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia
References:
Abstract: An alternative approach to classical Morel–Voevodsky stable motivic homotopy theory $SH(k)$ is suggested. The triangulated category of framed bispectra $SH_{\mathrm{nis}}^{\mathrm{fr}}(k)$ and effective framed bispectra $SH_{\mathrm{nis}}^{\mathrm{fr},\mathrm{eff}}(k)$ are introduced in the paper. Both triangulated categories only involve Nisnevich local equivalences and have nothing to do with any kind of motivic equivalences. It is shown that $SH_{\mathrm{nis}}^{\mathrm{fr}}(k)$ and $SH_{\mathrm{nis}}^{\mathrm{fr},\mathrm{eff}}(k)$ recover classical Morel–Voevodsky triangulated categories of bispectra $SH(k)$ and effective bispectra $SH^{\mathrm{eff}}(k)$ respectively.
Also, $SH(k)$ and $SH^{\mathrm{eff}}(k)$ are recovered as the triangulated category of framed motivic spectral functors $SH_{S^1}^{\mathrm{fr}}[\mathcal{F}r_0(k)]$ and the triangulated category of framed motives $\mathcal{SH}^{\mathrm{fr}}(k)$ constructed in the paper.
Keywords: motivic homotopy theory, framed motives, triangulated categories.
Received: 10.07.2022
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 6, Pages 991–1017
DOI: https://doi.org/10.1090/spmj/1786
Document Type: Article
Language: English
Citation: G. Garkusha, I. Panin, “Triangulated categories of framed bispectra and framed motives”, Algebra i Analiz, 34:6 (2022), 135–169; St. Petersburg Math. J., 34:6 (2023), 991–1017
Citation in format AMSBIB
\Bibitem{GarPan22}
\by G.~Garkusha, I.~Panin
\paper Triangulated categories of framed bispectra and framed motives
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 6
\pages 135--169
\mathnet{http://mi.mathnet.ru/aa1838}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 6
\pages 991--1017
\crossref{https://doi.org/10.1090/spmj/1786}
Linking options:
  • https://www.mathnet.ru/eng/aa1838
  • https://www.mathnet.ru/eng/aa/v34/i6/p135
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :4
    References:27
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024