Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 6, Pages 34–54 (Mi aa1836)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Functions of perturbed noncommuting unbounded self-adjoint operators

A. B. Aleksandrova, V. V. Pellerba

a С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, наб. р. Фонтанки, 27, 191023, Санкт-Петербург, Россия
b С.-Петербургский Государственный Университет, Университетская наб., 7/9, Санкт-Петербург, Россия
References:
Abstract: Let $f$ be a function on $\mathbb{R}^2$ in the inhomogeneous Besov space $\text{Б}_{\infty,1}^1(\mathbb{R}^2)$. For a pair $(A,B)$ of not necessarily bounded and not necessarily commuting self-adjoint operators, we define the function $f(A,B)$ of $A$ and $B$ as a densely defined linear operator. We show that if $1\le p\le2$, $(A_1,B_1)$ and $(A_2,B_2)$ are pairs of not necessarily bounded and not necessarily commuting self-adjoint operators such that both $A_1-A_2$ and $B_1-B_2$ belong to the Schatten–von Neumann class $\mathbf{S}_p$ and $f\in\text{Б}_{\infty,1}^1(\mathbb{R}^2)$, then the following Lipschitz type estimate holds:
$$ \|f(A_1,B_1)-f(A_2,B_2)\|_{\mathbf{S}_p} \le\mathrm{const}\,\|f\|_{\text{Б}_{\infty,1}^1}\max\big\{\|A_1-A_2\|_{\mathbf{S}_p},\|B_1-B_2\|_{\mathbf{S}_p}\big\}. $$
Keywords: self-adjoint operator, Schatten-von Neumann classes, double operator integrals, triple operator integrals, functions of pairs of noncommuting operators.
Funding agency Grant number
Russian Science Foundation 18-11-00053
20-61-46016
Ministry of Science and Higher Education of the Russian Federation 075-15-2021-602
Received: 29.07.2022
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 6, Pages 913–927
DOI: https://doi.org/10.1090/spmj/1784
Document Type: Article
Language: Russian
Citation: A. B. Aleksandrov, V. V. Peller, “Functions of perturbed noncommuting unbounded self-adjoint operators”, Algebra i Analiz, 34:6 (2022), 34–54; St. Petersburg Math. J., 34:6 (2023), 913–927
Citation in format AMSBIB
\Bibitem{AlePel22}
\by A.~B.~Aleksandrov, V.~V.~Peller
\paper Functions of perturbed noncommuting unbounded self-adjoint operators
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 6
\pages 34--54
\mathnet{http://mi.mathnet.ru/aa1836}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 6
\pages 913--927
\crossref{https://doi.org/10.1090/spmj/1784}
Linking options:
  • https://www.mathnet.ru/eng/aa1836
  • https://www.mathnet.ru/eng/aa/v34/i6/p34
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :3
    References:30
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024