|
This article is cited in 3 scientific papers (total in 3 papers)
Research Papers
Sufficient conditions for the minimality of concave functions
M. I. Novikov Saint Petersburg State University
Abstract:
A condition is described sufficient for the biconcave function
$ \mathcal{B}\colon\mathfrak{S}=\left\{ (x,y)\in\mathbb{R}^2\colon x-2\le y\le x+2 \right\}\to\mathbb{R} $
to be minimal with respect to the support $ L\colon\mathfrak{S}\to[-\infty,+\infty) $,
i.e., to be the pointwise minimal among all biconcave functions $ B\colon\mathfrak{S}\to\mathbb{R} $ satisfying $ B\ge L $.
Keywords:
Bellman function, biconcave function, Martingale transformation, Burkholder method.
Received: 28.01.2022
Citation:
M. I. Novikov, “Sufficient conditions for the minimality of concave functions”, Algebra i Analiz, 34:5 (2022), 173–210; St. Petersburg Math. J., 34:5 (2023), 847–872
Linking options:
https://www.mathnet.ru/eng/aa1834 https://www.mathnet.ru/eng/aa/v34/i5/p173
|
|