Abstract:
A condition is described sufficient for the biconcave function
$ \mathcal{B}\colon\mathfrak{S}=\left\{ (x,y)\in\mathbb{R}^2\colon x-2\le y\le x+2 \right\}\to\mathbb{R} $
to be minimal with respect to the support $ L\colon\mathfrak{S}\to[-\infty,+\infty) $,
i.e., to be the pointwise minimal among all biconcave functions $ B\colon\mathfrak{S}\to\mathbb{R} $ satisfying $ B\ge L $.
Citation:
M. I. Novikov, “Sufficient conditions for the minimality of concave functions”, Algebra i Analiz, 34:5 (2022), 173–210; St. Petersburg Math. J., 34:5 (2023), 847–872
\Bibitem{Nov22}
\by M.~I.~Novikov
\paper Sufficient conditions for the minimality of concave functions
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 5
\pages 173--210
\mathnet{http://mi.mathnet.ru/aa1834}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 5
\pages 847--872
\crossref{https://doi.org/10.1090/spmj/1781}
Linking options:
https://www.mathnet.ru/eng/aa1834
https://www.mathnet.ru/eng/aa/v34/i5/p173
This publication is cited in the following 3 articles:
M. I. Novikov, “Tochnye otsenki raspredelenii martingalnykh preobrazovanii indikatorov sobytii”, Algebra i analiz, 36:4 (2024), 57–147
V. I. Vasyunin, P. B. Zatitskii, “Some Extremal Problems for Martingale Transforms. I”, J Math Sci, 2024
V. I. Vasyunin, P. B. Zatitskii, “Nekotorye ekstremalnye zadachi dlya martingalnykh preobrazovanii. I”, Issledovaniya po lineinym operatoram i teorii funktsii. 51, Zap. nauchn. sem. POMI, 527, POMI, SPb., 2023, 5–53