Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 3, Pages 296–330 (Mi aa1819)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Global pointwise estimates of positive solutions to sublinear equations

I. E. Verbitsky

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
References:
Abstract: Bilateral pointwise estimates are provided for positive solutions $u$ to the sublinear integral equation
$$ u = \mathbf{G}(\sigma u^q) + f \textrm{ in } \Omega, $$
for $0 < q < 1$, where $\sigma\ge 0$ is a measurable function or a Radon measure, $ f \ge 0$, and $\mathbf{G}$ is the integral operator associated with a positive kernel $G$ on $\Omega\times\Omega$. The main results, which include the existence criteria and uniqueness of solutions, hold true for quasi-metric, or quasi-metrically modifiable kernels $G$. As a consequence, bilateral estimates, are obtained, along with existence and uniqueness, for positive solutions $u$, possibly unbounded, to sublinear elliptic equations involving the fractional Laplacian,
$$ (-\Delta)^{\frac{\alpha}{2}} u = \sigma u^q + \mu \textrm{ in } \Omega, u=0 \textrm{ in } \Omega^c, $$
where $0<q<1$, and $\mu, \sigma \ge 0$ are measurable functions, or Radon measures, on a bounded uniform domain $\Omega \subset \mathbb{R}^n$ for $0 < \alpha \le 2$, or on the entire space $\mathbb{R}^n$, a ball or half-space, for $0 < \alpha <n$.
Keywords: sublinear equations, quasi-metric kernels, Green's kernel, weak maximum principle.
Received: 25.10.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 3, Pages 531–556
DOI: https://doi.org/10.1090/spmj/1768
Document Type: Article
Language: English
Citation: I. E. Verbitsky, “Global pointwise estimates of positive solutions to sublinear equations”, Algebra i Analiz, 34:3 (2022), 296–330; St. Petersburg Math. J., 34:3 (2023), 531–556
Citation in format AMSBIB
\Bibitem{Ver22}
\by I.~E.~Verbitsky
\paper Global pointwise estimates of positive solutions to sublinear equations
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 3
\pages 296--330
\mathnet{http://mi.mathnet.ru/aa1819}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 3
\pages 531--556
\crossref{https://doi.org/10.1090/spmj/1768}
Linking options:
  • https://www.mathnet.ru/eng/aa1819
  • https://www.mathnet.ru/eng/aa/v34/i3/p296
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :1
    References:30
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025