Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 3, Pages 252–275 (Mi aa1818)  

Research Papers

Free boundary problems via Sakai's theorem

D. Vardakisa, A. Volbergab

a Department of Mathematics, Michigan State University, East Lansing, MI. 48823
b Hausdorff Center for Mathematics, Bonn, Germany
References:
Abstract: A Schwarz function on an open domain $\Omega$ is a holomorphic function satisfying $S(\zeta)=\overline{\zeta}$ on $\Gamma$, which is part of the boundary of $\Omega$. Sakai in 1991 gave a complete characterization of the boundary of a domain admitting a Schwarz function. In fact, if $\Omega$ is simply connected and $\Gamma=\partial \Omega\cap D(\zeta,r)$, then $\Gamma$ has to be regular real analytic. This paper is an attempt to describe $\Gamma$ when the boundary condition is slightly relaxed. In particular, three different scenarios over a simply connected domain $\Omega$ are treated: when $f_1(\zeta)=\overline{\zeta}f_2(\zeta)$ on $\Gamma$ with $f_1,f_2$ holomorphic and continuous up to the boundary, when $\mathcal{U}/\mathcal{V}$ equals certain real analytic function on $\Gamma$ with $\mathcal{U},\mathcal{V}$ positive and harmonic on $\Omega$ and vanishing on $\Gamma$, and when $S(\zeta)=\Phi(\zeta,\overline{\zeta})$ on $\Gamma$ with $\Phi$ a holomorphic function of two variables. It turns out that the boundary piece $\Gamma$ can be, respectively, anything from $C^\infty$ to merely $C^1$, regular except finitely many points, or regular except for a measure zero set.
Keywords: free boundary problems, Schwarz function, real analytic curves, pseudocontinuation, positive harmonic functions, boundary Harnack principle, Nevanlinna domains.
Funding agency Grant number
National Science Foundation DMS 1900286
Alexander von Humboldt-Stiftung
The second author was partially supported by NSF grant DMS 1900286 and Alexander von Humboldt Foundation.
Received: 01.06.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 3, Pages 497–514
DOI: https://doi.org/10.1090/spmj/1766
Document Type: Article
Language: English
Citation: D. Vardakis, A. Volberg, “Free boundary problems via Sakai's theorem”, Algebra i Analiz, 34:3 (2022), 252–275; St. Petersburg Math. J., 34:3 (2023), 497–514
Citation in format AMSBIB
\Bibitem{VarVol22}
\by D.~Vardakis, A.~Volberg
\paper Free boundary problems via Sakai's theorem
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 3
\pages 252--275
\mathnet{http://mi.mathnet.ru/aa1818}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 3
\pages 497--514
\crossref{https://doi.org/10.1090/spmj/1766}
Linking options:
  • https://www.mathnet.ru/eng/aa1818
  • https://www.mathnet.ru/eng/aa/v34/i3/p252
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025