Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 3, Pages 207–231 (Mi aa1816)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

Spectral asymptotics for a family of LCM matrices

T. Hilberdinka, A. Pushnitskib

a Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading, RG6 6AX, U.K.
b Department of Mathematics, King's College London, Strand, London, WC2R 2LS, U.K.
References:
Abstract: The family of arithmetical matrices is studied given explicitly by
$$ E(\sigma,\tau)= \Big\{\frac{n^\sigma m^\sigma}{[n,m]^\tau}\Big\}_{n,m=1}^\infty, $$
where $[n,m]$ is the least common multiple of $n$ and $m$ and the real parameters $\sigma$ and $\tau$ satisfy $\rho:=\tau-2\sigma>0$, $\tau-\sigma>\frac12$, and $\tau>0$. It is proved that $E(\sigma,\tau)$ is a compact selfadjoint positive definite operator on $\ell^2(\mathbb{N})$, and the ordered sequence of eigenvalues of $E(\sigma,\tau)$ obeys the asymptotic relation
$$ \lambda_n(E(\sigma,\tau))=\frac{\varkappa(\sigma,\tau)}{n^\rho}+o(n^{-\rho}),\quad n\to\infty, $$
with some $\varkappa(\sigma,\tau)>0$. This fact is applied to the asymptotics of singular values of truncated multiplicative Toeplitz matrices with the symbol given by the Riemann zeta function on the vertical line with abscissa $\sigma<1/2$. The relationship of the spectral analysis of $E(\sigma,\tau)$ with the theory of generalized prime systems is also pointed out.
Keywords: LCM matrix, arithmetical matrix, multiplicative Toeplitz matrix, eigenvalue asymptotics.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1619
The second author was supported by the Ministry of Science and Higher Education of the Russian Federation, contract №075-15-2019-1619.
Received: 25.10.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 3, Pages 463–481
DOI: https://doi.org/10.1090/spmj/1764
Document Type: Article
Language: English
Citation: T. Hilberdink, A. Pushnitski, “Spectral asymptotics for a family of LCM matrices”, Algebra i Analiz, 34:3 (2022), 207–231; St. Petersburg Math. J., 34:3 (2023), 463–481
Citation in format AMSBIB
\Bibitem{HilPus22}
\by T.~Hilberdink, A.~Pushnitski
\paper Spectral asymptotics for a family of LCM matrices
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 3
\pages 207--231
\mathnet{http://mi.mathnet.ru/aa1816}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 3
\pages 463--481
\crossref{https://doi.org/10.1090/spmj/1764}
Linking options:
  • https://www.mathnet.ru/eng/aa1816
  • https://www.mathnet.ru/eng/aa/v34/i3/p207
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025