Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 3, Pages 131–158 (Mi aa1812)  

Research Papers

Hilbert points in Hardy spaces

O. F. Breviga, J. Ortega-Cerdáb, K. Seipc

a Department of Mathematics, University of Oslo, 0851 Oslo, Norway
b Department de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
c Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
References:
Abstract: A Hilbert point in $H^p(\mathbb{T}^d)$, for $d\geq1$ and $1\leq p \leq \infty$, is a nontrivial function $\varphi$ in $H^p(\mathbb{T}^d)$ such that $\| \varphi \|_{H^p(\mathbb{T}^d)} \leq \|\varphi + f\|_{H^p(\mathbb{T}^d)}$ whenever $f$ is in $H^p(\mathbb{T}^d)$ and orthogonal to $\varphi$ in the usual $L^2$ sense. When $p\neq 2$, $\varphi$ is a Hilbert point in $H^p(\mathbb{T})$ if and only if $\varphi$ is a nonzero multiple of an inner function. An inner function on $\mathbb{T}^d$ is a Hilbert point in any of the spaces $H^p(\mathbb{T}^d)$, but there are other Hilbert points as well when $d\geq 2$. We investigate the case of $1$-homogeneous polynomials in depth and obtain as a byproduct a new proof of the sharp Khinchin inequality for Steinhaus variables in the range $2<p<\infty$. We also study briefly the dynamics of a certain nonlinear projection operator that characterizes Hilbert points as its fixed points. We exhibit an example of a function $\varphi$ that is a Hilbert point in $H^p(\mathbb{T}^3)$ for $p=2, 4$, but not for any other $p$; this is verified rigorously for $p>4$ but only numerically for $1\leq p<4$.
Keywords: Hardy spaces, inner functions, Hilbert points, $1$-homogeneous polynomials, Khinchin inequality for Steinhaus variables.
Funding agency Grant number
Generalitat de Catalunya 2017 SGR 358
Ministry of Science and Innovation of Spanish MTM2017-83499-P
Research Council of Norway 275113
Ortega-Cerdà was partially supported by the Generalitat de Catalunya (grant 2017 SGR 358) and the Spanish Ministerio de Ciencia, Innovación y Universidades (project MTM2017-83499-P). Seip was supported in part by the Research Council of Norway grant 275113.
Received: 21.06.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 3, Pages 405–425
DOI: https://doi.org/10.1090/spmj/1760
Document Type: Article
Language: English
Citation: O. F. Brevig, J. Ortega-Cerdá, K. Seip, “Hilbert points in Hardy spaces”, Algebra i Analiz, 34:3 (2022), 131–158; St. Petersburg Math. J., 34:3 (2023), 405–425
Citation in format AMSBIB
\Bibitem{BreOrtSei22}
\by O.~F.~Brevig, J.~Ortega-Cerd{\' a}, K.~Seip
\paper Hilbert points in Hardy spaces
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 3
\pages 131--158
\mathnet{http://mi.mathnet.ru/aa1812}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 3
\pages 405--425
\crossref{https://doi.org/10.1090/spmj/1760}
Linking options:
  • https://www.mathnet.ru/eng/aa1812
  • https://www.mathnet.ru/eng/aa/v34/i3/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025