|
Research Papers
Hilbert points in Hardy spaces
O. F. Breviga, J. Ortega-Cerdáb, K. Seipc a Department of Mathematics, University of Oslo, 0851 Oslo, Norway
b Department de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
c Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
Abstract:
A Hilbert point in $H^p(\mathbb{T}^d)$, for $d\geq1$ and $1\leq p \leq \infty$, is a nontrivial function $\varphi$ in $H^p(\mathbb{T}^d)$ such that $\| \varphi \|_{H^p(\mathbb{T}^d)} \leq \|\varphi + f\|_{H^p(\mathbb{T}^d)}$ whenever $f$ is in $H^p(\mathbb{T}^d)$ and orthogonal to $\varphi$ in the usual $L^2$ sense. When $p\neq 2$, $\varphi$ is a Hilbert point in $H^p(\mathbb{T})$ if and only if $\varphi$ is a nonzero multiple of an inner function. An inner function on $\mathbb{T}^d$ is a Hilbert point in any of the spaces $H^p(\mathbb{T}^d)$, but there are other Hilbert points as well when $d\geq 2$. We investigate the case of $1$-homogeneous polynomials in depth and obtain as a byproduct a new proof of the sharp Khinchin inequality for Steinhaus variables in the range $2<p<\infty$. We also study briefly the dynamics of a certain nonlinear projection operator that characterizes Hilbert points as its fixed points. We exhibit an example of a function $\varphi$ that is a Hilbert point in $H^p(\mathbb{T}^3)$ for $p=2, 4$, but not for any other $p$; this is verified rigorously for $p>4$ but only numerically for $1\leq p<4$.
Keywords:
Hardy spaces, inner functions, Hilbert points, $1$-homogeneous polynomials, Khinchin inequality for Steinhaus variables.
Received: 21.06.2021
Citation:
O. F. Brevig, J. Ortega-Cerdá, K. Seip, “Hilbert points in Hardy spaces”, Algebra i Analiz, 34:3 (2022), 131–158; St. Petersburg Math. J., 34:3 (2023), 405–425
Linking options:
https://www.mathnet.ru/eng/aa1812 https://www.mathnet.ru/eng/aa/v34/i3/p131
|
|