Processing math: 100%
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 2, Pages 185–230 (Mi aa1805)  

Research Papers

Differentiable functions on modules and equation grad(w)=Mgrad(v)

K. J. Ciosmakab

a University of Oxford, Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford OX2 6GG, United Kingdom
b University of Oxford, St John's College, St Giles', Oxford OX1 3JP, United Kingdom
References:
Abstract: Let A be a finite-dimensional, commutative algebra over R or C. We extend the notion of A-differentiable functions on A and develop a theory of A-differentiable functions on finitely generated A-modules. Let U be an open, bounded and convex subset of such a module. We give an explicit formula for A-differentiable functions on U of prescribed class of differentiability in terms of real or complex differentiable functions, in the case when A is singly generated and the module is arbitrary and in the case when A is arbitrary and the module is free. We prove that certain components of A-differentiable function are of higher differentiability than the function itself.
Let M be a constant, square matrix. Using the formula mentioned above, we find a complete description of solutions of the equation grad(w)=Mgrad(v).
We formulate the boundary value problem for generalized Laplace equations M2v=2vMT and prove that for given boundary data there exists a unique solution, for which we provide a formula.
Keywords: differentiable functions on algebras, generalised analytic functions, generalised Laplace equations, Banach algebra of A-differentiable functions.
Received: 10.01.2020
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 2, Pages 271–303
DOI: https://doi.org/10.1090/spmj/1754
Bibliographic databases:
Document Type: Article
Language: English
Citation: K. J. Ciosmak, “Differentiable functions on modules and equation grad(w)=Mgrad(v)”, Algebra i Analiz, 34:2 (2022), 185–230; St. Petersburg Math. J., 34:2 (2023), 271–303
Citation in format AMSBIB
\Bibitem{Cio22}
\by K.~J.~Ciosmak
\paper Differentiable functions on modules and equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 2
\pages 185--230
\mathnet{http://mi.mathnet.ru/aa1805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567618}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 2
\pages 271--303
\crossref{https://doi.org/10.1090/spmj/1754}
Linking options:
  • https://www.mathnet.ru/eng/aa1805
  • https://www.mathnet.ru/eng/aa/v34/i2/p185
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :2
    References:33
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025