Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 1, Pages 144–187 (Mi aa1799)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

On the algebraic cobordism spectra MSL and MSp

I. Panina, C. Walterb

a St.Petersburg Department of Steklov Institute of Mathematics, St.Petersburg, Russia
b Laboratoire J.-A. Dieudonné (UMR 6621 du CNRS) Département de mathématiques Université de Nice – Sophia Antipolis 06108 Nice Cedex 02, France
Full-text PDF (490 kB) Citations (3)
References:
Abstract: Algebraic cobordism spectra MSL and MSp are constructed. They are commutative monoids in the category of symmetric T2-spectra. The spectrum MSp comes with a natural symplectic orientation given either by a tautological Thom class thMSpMSp4,2(MSp2), or a tautological Borel class bMSp1MSp4,2(HP), or any of six other equivalent structures. For a commutative monoid E in the category SH(S), it is proved that the assignment φφ(thMSp) identifies the set of homomorphisms of monoids φ:MSpE in the motivic stable homotopy category SH(S) with the set of tautological Thom elements of symplectic orientations of E. A weaker universality result is obtained for MSL and special linear orientations. The universality of MSp has been used by the authors to prove a Conner–Floyed type theorem. The weak universality of MSL has been used by A. Ananyevskiy to prove another version of the Conner–Floyed type theorem.
Keywords: Aff1-homotopy theory, Thom classes, universality theorems.
Funding agency Grant number
Russian Science Foundation 19-71-30002
The results of §§2,6,7,9,11,13 are obtained with the support of the Russian Science Foundation grant №19-71-30002. The results of §§3,4,5,8,10,12 are obtained due to support provided by Laboratoire J.-A. Dieudonne, UMR 6621 du CNRS, Universite de Nice Sophia Antipolis.
Received: 26.11.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 1, Pages 109–141
DOI: https://doi.org/10.1090/spmj/1748
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. Panin, C. Walter, “On the algebraic cobordism spectra MSL and MSp”, Algebra i Analiz, 34:1 (2022), 144–187; St. Petersburg Math. J., 34:1 (2023), 109–141
Citation in format AMSBIB
\Bibitem{PanWal22}
\by I.~Panin, C.~Walter
\paper On the algebraic cobordism spectra $\mathbf{MSL}$ and $\mathbf{MSp}$
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 1
\pages 144--187
\mathnet{http://mi.mathnet.ru/aa1799}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4528766}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 1
\pages 109--141
\crossref{https://doi.org/10.1090/spmj/1748}
Linking options:
  • https://www.mathnet.ru/eng/aa1799
  • https://www.mathnet.ru/eng/aa/v34/i1/p144
  • This publication is cited in the following 3 articles:
    1. Th. Yu. Popelensky, “Algebraic and Homological Aspects of Hermitian K-Theory”, Proc. Steklov Inst. Math., 325 (2024), 230–261  mathnet  crossref  crossref  zmath
    2. Keyao Peng, “Milnor-Witt motivic cohomology and linear algebraic groups”, Advances in Mathematics, 458 (2024), 109973  crossref
    3. G. A. Garkusha, I. A. Panin, P. Østvær, “Framed motivic Γ-spaces”, Izv. Math., 87:1 (2023), 1–28  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :13
    References:46
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025