Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2021, Volume 33, Issue 5, Pages 193–206 (Mi aa1782)  

Research Papers

A new characterization of GCD domains of formal power series

A. Hamed

Department of Mathematics, Faculty of Sciences, Monastir, Tunisia
References:
Abstract: By using the $v$-operation, a new characterization for a power series ring to be a GCD domain is discussed. It is shown that if $D$ is a $\mathrm{UFD}$, then $D[\![X]\!]$ is a GCD domain if and only if for any two integral $v$-invertible $v$‑ideals $I$ and $J$ of $D[\![X]\!]$ such that $(IJ)_{0}\neq (0),$ we have $((IJ)_{0})_{v}$ $= ((IJ)_{v})_{0},$ where $I_0=\{f(0) \mid f\in I\}$. This shows that if $D$ is a GCD domain such that $D[\![X]\!]$ is a $\pi$-domain, then $D[\![X]\!]$ is a GCD domain.
Keywords: GCD domain, power series rings.
Received: 15.10.2019
English version:
St. Petersburg Mathematical Journal, 2022, Volume 33, Issue 5, Pages 879–889
DOI: https://doi.org/10.1090/spmj/1731
Document Type: Article
Language: English
Citation: A. Hamed, “A new characterization of GCD domains of formal power series”, Algebra i Analiz, 33:5 (2021), 193–206; St. Petersburg Math. J., 33:5 (2022), 879–889
Citation in format AMSBIB
\Bibitem{Ham21}
\by A.~Hamed
\paper A new characterization of GCD domains of formal power series
\jour Algebra i Analiz
\yr 2021
\vol 33
\issue 5
\pages 193--206
\mathnet{http://mi.mathnet.ru/aa1782}
\transl
\jour St. Petersburg Math. J.
\yr 2022
\vol 33
\issue 5
\pages 879--889
\crossref{https://doi.org/10.1090/spmj/1731}
Linking options:
  • https://www.mathnet.ru/eng/aa1782
  • https://www.mathnet.ru/eng/aa/v33/i5/p193
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :14
    References:28
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024