Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2021, Volume 33, Issue 5, Pages 153–175 (Mi aa1780)  

Research Papers

Limit behavior of Weyl coefficients

R. Pruckner, H. Woracek

Institute for Analysis and Scientific Computing, Vienna University of Technology Wiedner Hauptstrasse 8-10/101, 1040 Wien, Austria
References:
Abstract: The sets of radial or nontangential limit points towards $i\infty$ of a Nevanlinna function $q$ are studied. Given a nonempty, closed, and connected subset $\mathcal{L}$ of $\overline{\mathbb C_+}$, a Hamiltonian $H$ is constructed explicitly such that the radial and outer angular cluster sets towards $i\infty$ of the Weyl coefficient $q_H$ are both equal to $\mathcal{L}$. The method is based on a study of the continuous group action of rescaling operators on the set of all Hamiltonians.
Keywords: Weyl coefficient, canonical system, cluster set, Nevanlinna function.
Funding agency Grant number
Austrian Science Fund 30715-N35
I 4600
Russian Foundation for Basic Research
This work was supported by the project P 30715–N35 of the Austrian Science Fund. The second author was supported by the joint project I 4600 of the Austrian Science Fund (FWF) and the Russian Foundation of Basic Research (RFBR).
Received: 11.06.2019
English version:
St. Petersburg Mathematical Journal, 2022, Volume 33, Issue 5, Pages 849–865
DOI: https://doi.org/10.1090/spmj/1729
Document Type: Article
Language: English
Citation: R. Pruckner, H. Woracek, “Limit behavior of Weyl coefficients”, Algebra i Analiz, 33:5 (2021), 153–175; St. Petersburg Math. J., 33:5 (2022), 849–865
Citation in format AMSBIB
\Bibitem{PruWor21}
\by R.~Pruckner, H.~Woracek
\paper Limit behavior of Weyl coefficients
\jour Algebra i Analiz
\yr 2021
\vol 33
\issue 5
\pages 153--175
\mathnet{http://mi.mathnet.ru/aa1780}
\transl
\jour St. Petersburg Math. J.
\yr 2022
\vol 33
\issue 5
\pages 849--865
\crossref{https://doi.org/10.1090/spmj/1729}
Linking options:
  • https://www.mathnet.ru/eng/aa1780
  • https://www.mathnet.ru/eng/aa/v33/i5/p153
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :3
    References:42
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024