Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2021, Volume 33, Issue 4, Pages 173–209 (Mi aa1775)  

Research Papers

Do some nontrivial closed $z$-invariant subspaces have the division property?

J. Esterle

IMB, UMR 5251, Université de Bordeaux 351, cours de la Libération, 33405 - Talence, France
References:
Abstract: Banach spaces $E$ of functions holomorphic on the open unit disk $\mathbb{D}$ are considered such that the unilateral shift $S$ and the backward shift $T$ are bounded on $E$. Under the assumption that the spectra of $S$ and $T$ are equal to the closed unit disk, the existence is discussed of closed $z$-invariant subspaces $N$ of $E$ having the “division property,” which means that the function $f_{\lambda}\colon z \mapsto {f(z)\over z-\lambda}$ belongs to $N$ for every $\lambda \in \mathbb{D}$ and for every $f \in N$ with $f(\lambda)=0$. This question is related to the existence of nontrivial bi-invariant subspaces of Banach spaces of hyperfunctions on the unit circle $\mathbb{T}$.
Keywords: unilateral shift, backward shift, division property, invariant subspace, bi-invariant subspace.
Received: 05.05.2020
English version:
St. Petersburg Mathematical Journal, 2022, Volume 33, Issue 4, Pages 711–738
DOI: https://doi.org/10.1090/spmj/1724
Document Type: Article
Language: English
Citation: J. Esterle, “Do some nontrivial closed $z$-invariant subspaces have the division property?”, Algebra i Analiz, 33:4 (2021), 173–209; St. Petersburg Math. J., 33:4 (2022), 711–738
Citation in format AMSBIB
\Bibitem{Est21}
\by J.~Esterle
\paper Do some nontrivial closed $z$-invariant subspaces have the division property?
\jour Algebra i Analiz
\yr 2021
\vol 33
\issue 4
\pages 173--209
\mathnet{http://mi.mathnet.ru/aa1775}
\transl
\jour St. Petersburg Math. J.
\yr 2022
\vol 33
\issue 4
\pages 711--738
\crossref{https://doi.org/10.1090/spmj/1724}
Linking options:
  • https://www.mathnet.ru/eng/aa1775
  • https://www.mathnet.ru/eng/aa/v33/i4/p173
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :11
    References:33
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024