Citation:
E. A. Zlobina, A. P. Kiselev, “Short-wavelength diffraction by a contour with Hölder-type singularity in curvature”, Algebra i Analiz, 33:2 (2021), 35–55; St. Petersburg Math. J., 33:2 (2022), 207–222
\Bibitem{ZloKis21}
\by E.~A.~Zlobina, A.~P.~Kiselev
\paper Short-wavelength diffraction by a contour with H\"older-type singularity in curvature
\jour Algebra i Analiz
\yr 2021
\vol 33
\issue 2
\pages 35--55
\mathnet{http://mi.mathnet.ru/aa1747}
\transl
\jour St. Petersburg Math. J.
\yr 2022
\vol 33
\issue 2
\pages 207--222
\crossref{https://doi.org/10.1090/spmj/1697}
Linking options:
https://www.mathnet.ru/eng/aa1747
https://www.mathnet.ru/eng/aa/v33/i2/p35
This publication is cited in the following 7 articles:
E. A. Zlobina, “Diffraction of Short Waves by a Contour with a Hölder Singularity of the Curvature. Transition Zone”, J Math Sci, 283:4 (2024), 522
E. A. Zlobina, A. P. Kiselev, “Fresnel-Type Transition Zones”, J. Commun. Technol. Electron., 68:6 (2023), 639
E. A. Zlobina, “Short-Wavelength Diffraction by a Contour with Nonsmooth Curvature. Boundary Layer Approach”, J Math Sci, 277:4 (2023), 586
Ekaterina A. Zlobina, Aleksei P. Kiselev, “The Malyuzhinets—Popov diffraction problem revisited”, Wave Motion, 121 (2023), 103172
Ekaterina A. Zlobina, Aleksei P. Kiselev, 2022 Days on Diffraction (DD), 2022, 1
E. A. Zlobina, A. P. Kiselev, “Transition Zone in High-Frequency Diffraction on Impedance Contour with Jumping Curvature. Kirchhoff's Method and Boundary Layer Method”, J. Commun. Technol. Electron., 67:2 (2022), 130
E. A. Zlobina, “Difraktsiya korotkikh voln na konture s gelderovskoi singulyarnostyu krivizny. Perekhodnaya zona”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 43–56