Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2021, Volume 33, Issue 1, Pages 136–193 (Mi aa1741)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Quaternionic Grassmannians and Borel classes in algebraic geometry

I. Panina, C. Walterb

a Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O. 29B, 199178, Saint Petersburg, Russia
b Laboratoire J.-A. Dieudonné (UMR 6621 du CNRS), Département de mathématiques Université de Nice -- Sophia Antipolis, 06108 Nice Cedex 02, France
Full-text PDF (569 kB) Citations (3)
References:
Abstract: The quaternionic Grassmannian $\mathrm{HGr}(r,n)$ is the affine open subscheme of the usual Grassmannian parametrizing those $2r$-dimensional subspaces of a $2n$-dimensional symplectic vector space on which the symplectic form is nondegenerate. In particular, we have $\mathrm{HP}^{n} = \mathrm{HGr}(1,n+1)$. For a symplectically oriented cohomology theory $A$, including oriented theories but also the Hermitian $\mathrm{K}$-theory, Witt groups, and algebraic symplectic cobordism, we have $A(\mathrm{HP}^{n}) = A(\operatorname{pt})[p]/(p^{n+1})$. Borel classes for symplectic bundles are introduced in the paper. They satisfy the splitting principle and the Cartan sum formula, and they are used to calculate the cohomology of quaternionic Grassmannians. In a symplectically oriented theory the Thom classes of rank $2$ symplectic bundles determine Thom and Borel classes for all symplectic bundles, and the symplectic Thom classes can be recovered from the Borel classes.
The cell structure of the $\mathrm{HGr}(r,n)$ exists in cohomology, but it is difficult to see more than part of it geometrically. An exception is $\mathrm{HP}^{n}$ where the cell of codimension $2i$ is a quasi-affine quotient of $\mathbb{A}^{4n-2i+1}$ by a nonlinear action of $\mathbb{G}_{a}$.
Keywords: simplectically oriented cohomology theory, Hermitian $\mathrm{K}$-theory, Witt groups, algebraic symplectic cobordism, cell structure splitting principle.
Funding agency Grant number
Russian Science Foundation 19-71-30002
Université de Nice Sophia Antipolis
The results of §§$2, 6, 7, 9, 11, 13, 14$ are obtained with the support of the Russian Science Foundation grant №19-71-30002. The results of §§$3, 4, 5, 8, 10, 15$ are obtained due to support provided by Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice Sophia Antipolis.
Received: 16.10.2020
English version:
St. Petersburg Mathematical Journal, 2022, Volume 33, Issue 1, Pages 97–140
DOI: https://doi.org/10.1090/spmj/1692
Document Type: Article
Language: English
Citation: I. Panin, C. Walter, “Quaternionic Grassmannians and Borel classes in algebraic geometry”, Algebra i Analiz, 33:1 (2021), 136–193; St. Petersburg Math. J., 33:1 (2022), 97–140
Citation in format AMSBIB
\Bibitem{PanWal21}
\by I.~Panin, C.~Walter
\paper Quaternionic Grassmannians and Borel classes in algebraic geometry
\jour Algebra i Analiz
\yr 2021
\vol 33
\issue 1
\pages 136--193
\mathnet{http://mi.mathnet.ru/aa1741}
\transl
\jour St. Petersburg Math. J.
\yr 2022
\vol 33
\issue 1
\pages 97--140
\crossref{https://doi.org/10.1090/spmj/1692}
Linking options:
  • https://www.mathnet.ru/eng/aa1741
  • https://www.mathnet.ru/eng/aa/v33/i1/p136
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :26
    References:26
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024