|
This article is cited in 1 scientific paper (total in 1 paper)
Research Papers
Lagrange multipliers for evolution problems with constraints on the derivatives
A. Azevedoa, J.-F. Rodriguesb, L. Santosa a CMAT— Departamento de Matemática, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
b CMAFcIO — Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa P-1749-016 Lisboa, Portugal
Abstract:
We prove the existence of generalized Lagrange multipliers for a class of evolution problems for linear differential operators of different types subject to constraints on the derivatives. Those Lagrange multipliers and the respective solutions are stable for the vanishing of the coercive parameter and are naturally associated with evolution variational inequalities with time-dependent convex sets of gradient type. We apply these results to the sandpile problem, to superconductivity problems, to flows of thick fluids, to problems with the biharmonic operator, and to first order vector fields of subelliptic type.
Keywords:
variational inequalities, sandpile problem, superconductivity problems, flows of thick fluids, problems with the biharmonic operator, first order vector fields of subelliptic type.
Received: 25.04.2019
Citation:
A. Azevedo, J.-F. Rodrigues, L. Santos, “Lagrange multipliers for evolution problems with constraints on the derivatives”, Algebra i Analiz, 32:3 (2020), 65–83; St. Petersburg Math. J., 32:3 (2021), 435–448
Linking options:
https://www.mathnet.ru/eng/aa1700 https://www.mathnet.ru/eng/aa/v32/i3/p65
|
|