Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2020, Volume 32, Issue 2, Pages 201–228 (Mi aa1694)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

Sharp estimates for mean square approximations of classes of periodic convolutions by spaces of shifts

A. Yu. Ulitskaya

St. Petersburg State University, Mathematics and Mechanics Faculty
Full-text PDF (316 kB) Citations (2)
References:
Abstract: Let $ L_p$ be the classical Lebesgue spaces of $ 2\pi $-periodic functions and $ E(f,X)_2$ the best approximation of  $ f$ by the space  $ X$ in  $ L_2$. For $ n\in \mathbb{N}$, $ B\in L_2$, the symbol $ \mathbb{S}_{B,n}$ stands for the space of functions  $ s$ of the form $\displaystyle s(x)=\sum _{j=0}^{2n-1}\beta _jB\Big (x-\frac {j\pi }{n}\Big ).$     In this paper, all spaces  $ \mathbb{S}_{B,n}$ are described that provide a sharp constant in several inequalities for approximation of classes of convolutions with a kernel  $ G\in L_1$. In particular, necessary and sufficient conditions are obtained under which the inequality $\displaystyle E\bigl (f,\mathbb{S}_{B,n}\bigr )_2\leq \vert c^\ast _{2n+1}(G)\vert\Vert\varphi \Vert _2$     is fulfilled. This inequality is sharp on the class of functions  $ f$ representable in the form $ f=G\ast \varphi $, $ \varphi \in L_2$. The constant $ \vert c^\ast _{2n+1}(G)\vert$ is the $ (2n+1)$th term of the sequence $ \{\vert c_l(G)\vert\}_{l\in \mathbb{Z}}$ of absolute values of the Fourier coefficients of  $ G$ arranged in nonincreasing order. In addition, easily verifiable conditions are indicated that suffice for the above inequality. Examples of kernels and extremal subspaces satisfying these conditions are provided.
Keywords: best approximation, spaces of shifts, sharp constants, classes of convolutions.
Funding agency Grant number
Russian Science Foundation 18-11-00055
This work was supported by the Russian Science Foundation under grant no. 18-11-00055.
Received: 24.06.2018
English version:
St. Petersburg Mathematical Journal, 2021, Volume 32, Issue 2, Pages 349–369
DOI: https://doi.org/10.1090/spmj/1650
Bibliographic databases:
Document Type: Article
MSC: 41A17
Language: Russian
Citation: A. Yu. Ulitskaya, “Sharp estimates for mean square approximations of classes of periodic convolutions by spaces of shifts”, Algebra i Analiz, 32:2 (2020), 201–228; St. Petersburg Math. J., 32:2 (2021), 349–369
Citation in format AMSBIB
\Bibitem{Uli20}
\by A.~Yu.~Ulitskaya
\paper Sharp estimates for mean square approximations of classes of periodic convolutions by spaces of shifts
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 2
\pages 201--228
\mathnet{http://mi.mathnet.ru/aa1694}
\elib{https://elibrary.ru/item.asp?id=46768545}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 2
\pages 349--369
\crossref{https://doi.org/10.1090/spmj/1650}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000626332600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102834508}
Linking options:
  • https://www.mathnet.ru/eng/aa1694
  • https://www.mathnet.ru/eng/aa/v32/i2/p201
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025