Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2020, Volume 32, Issue 1, Pages 187–207 (Mi aa1686)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Maxwell operator in a cylinder with coefficients that do not depend on the cross-sectional variables

N. D. Filonovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
Full-text PDF (256 kB) Citations (1)
References:
Abstract: The Maxwell operator is studied in a three-dimensional cylinder whose cross-section is a simply connected bounded domain with Lipschitz boundary. It is assumed that the coefficients of the operator are scalar functions depending on the longitudinal variable only. We show that the square of such an operator is unitarily equivalent to the orthogonal sum of four scalar elliptic operators of second order. If the coefficients are periodic along the axis of the cylinder, the spectrum of the Maxwell operator is absolutely continuous.
Keywords: Maxwell operator, simply connected cylinder, absolute continuity of the spectrum.
Funding agency Grant number
Russian Science Foundation 17-11-01069
This work was supported by Russian Science Foundation, grant 17-11-01069.
Received: 31.08.2019
English version:
St. Petersburg Mathematical Journal, 2021, Volume 32, Issue 1, Pages 139–154
DOI: https://doi.org/10.1090/spmj/1641
Bibliographic databases:
Document Type: Article
MSC: 35Q61
Language: Russian
Citation: N. D. Filonov, “Maxwell operator in a cylinder with coefficients that do not depend on the cross-sectional variables”, Algebra i Analiz, 32:1 (2020), 187–207; St. Petersburg Math. J., 32:1 (2021), 139–154
Citation in format AMSBIB
\Bibitem{Fil20}
\by N.~D.~Filonov
\paper Maxwell operator in a cylinder with coefficients that do not depend on the cross-sectional variables
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 1
\pages 187--207
\mathnet{http://mi.mathnet.ru/aa1686}
\elib{https://elibrary.ru/item.asp?id=44977526}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 1
\pages 139--154
\crossref{https://doi.org/10.1090/spmj/1641}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610901000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100014719}
Linking options:
  • https://www.mathnet.ru/eng/aa1686
  • https://www.mathnet.ru/eng/aa/v32/i1/p187
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :34
    References:49
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024