Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 6, Pages 122–196 (Mi aa1677)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Homogenization of periodic Schrödinger-type equations, with lower order terms

M. A. Dorodnyi

Saint Petersburg State University
Full-text PDF (609 kB) Citations (3)
References:
Abstract: In $ L_2 (\mathbb{R}^d; \mathbb{C}^n)$, consider a selfadjoint matrix elliptic second order differential operator $ \mathcal {B}_\varepsilon $, $ 0<\varepsilon \leq 1$, with periodic coefficients depending on $ \mathbf {x}/\varepsilon $. The principal part of the operator is given in a factorized form, the operator involves first and zero order terms. Approximation is found for the operator exponential $ e^{-is \mathcal {B}_\varepsilon }$, $ s \in \mathbb{R}$, for small $ \varepsilon $ in the ( $ H^r \to L_2$)-operator norm with a suitable $ r$. The results are applied to study the behavior of the solution $ \mathbf {u}_\varepsilon $ of the Cauchy problem for the nonstationary Schrödinger-type equation $ i\partial _{s} \mathbf {u}_\varepsilon = \mathcal {B}_\varepsilon \mathbf {u}_\varepsilon + \mathbf {F}$. Applications to the magnetic Schrödinger equation and the two-dimensional Pauli equation with singular potentials are considered.
Keywords: periodic differential operators, Schrödinger-type equation, homogenization, effective operator, operator error estimates.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00087_а
Supported by RFBR, grant 16-01-00087 A.
Received: 20.03.2019
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 6, Pages 1001–1054
DOI: https://doi.org/10.1090/spmj/1632
Bibliographic databases:
Document Type: Article
MSC: 35B27
Language: Russian
Citation: M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, Algebra i Analiz, 31:6 (2019), 122–196; St. Petersburg Math. J., 31:6 (2020), 1001–1054
Citation in format AMSBIB
\Bibitem{Dor19}
\by M.~A.~Dorodnyi
\paper Homogenization of periodic Schrödinger-type equations, with lower order terms
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 6
\pages 122--196
\mathnet{http://mi.mathnet.ru/aa1677}
\elib{https://elibrary.ru/item.asp?id=45089947}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 6
\pages 1001--1054
\crossref{https://doi.org/10.1090/spmj/1632}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000587617700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097529341}
Linking options:
  • https://www.mathnet.ru/eng/aa1677
  • https://www.mathnet.ru/eng/aa/v31/i6/p122
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :33
    References:53
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024