Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 5, Pages 184–205 (Mi aa1672)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$

M. I. Revyakov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (296 kB) Citations (1)
References:
Abstract: In the author's earlier paper [Revyakov M., J. Multivariate Anal. 116 (2013) 25-34] concerning mathematical statistics, a need arose to employ functions called "Schur-convex functions of the $2$nd order with respect to two variables". In the present paper, the class of Schur-convex functions of the $2$nd order in $ n$ variables is introduced. Necessary and sufficient conditions (in the form of analogs of the Sylvester criterion) are established for a function to belong to this class. Examples are given of using Schur-convex functions of the $2$nd order for achieving maximal system reliability on the set of all possible allocations of elements into its subsystems.
Keywords: Schur-convex function, Hessian matrix, Sylvester criterion, system reliability, ordered allocation, majorization on a line.
Received: 27.01.2018
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 5, Pages 887–902
DOI: https://doi.org/10.1090/spmj/1627
Bibliographic databases:
Document Type: Article
MSC: Primary 47A07; Secondary 15B99, 26B25, 90B25
Language: Russian
Citation: M. I. Revyakov, “Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$”, Algebra i Analiz, 31:5 (2019), 184–205; St. Petersburg Math. J., 31:5 (2020), 887–902
Citation in format AMSBIB
\Bibitem{Rev19}
\by M.~I.~Revyakov
\paper Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 5
\pages 184--205
\mathnet{http://mi.mathnet.ru/aa1672}
\elib{https://elibrary.ru/item.asp?id=45328518}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 5
\pages 887--902
\crossref{https://doi.org/10.1090/spmj/1627}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000569407100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091645582}
Linking options:
  • https://www.mathnet.ru/eng/aa1672
  • https://www.mathnet.ru/eng/aa/v31/i5/p184
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :38
    References:62
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024