Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 3, Pages 216–238 (Mi aa1659)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Solutions in Lebesgue spaces to nonlinear elliptic equations with subnatural growth terms

A. Seesaneaa, I. E. Verbitskyb

a Department of Mathematics, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
b Department of Mathematics, University of Missouri, Columbia, Missouri 65211, USA
Full-text PDF (284 kB) Citations (5)
References:
Abstract: The paper is devoted to the existence problem for positive solutions $ {u \in L^{r}(\mathbb{R}^{n})}$, $ 0<r<\infty $, to the quasilinear elliptic equation
$$ -\Delta _{p} u = \sigma u^{q} \text { in } \mathbb{R}^n $$
in the subnatural growth case $ 0<q< p-1$, where $ \Delta _{p}u = \mathrm {div}( \vert\nabla u\vert^{p-2} \nabla u )$ is the $ p$-Laplacian with $ 1<p<\infty $, and $ \sigma $ is a nonnegative measurable function (or measure) on $ \mathbb{R}^n$.
The techniques rely on a study of general integral equations involving nonlinear potentials and related weighted norm inequalities. They are applicable to more general quasilinear elliptic operators in place of $ \Delta _{p}$ such as the $ \mathcal {A}$-Laplacian $ \mathrm {div} \mathcal {A}(x,\nabla u)$, or the fractional Laplacian $ (-\Delta )^{\alpha }$ on $ \mathbb{R}^n$, as well as linear uniformly elliptic operators with bounded measurable coefficients $ \mathrm {div} (\mathcal {A} \nabla u)$ on an arbitrary domain $ \Omega \subseteq \mathbb{R}^n$ with a positive Green function.
Keywords: quasilinear elliptic equation, measure data, $p$-Laplacian, fractional Laplacian, Wolff potential, Green function.
Funding agency Grant number
Japan Society for the Promotion of Science 17H01092
A. S. is partially supported by JSPS KAKENHI Grant no. 17H01092
Received: 01.11.2018
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 3, Pages 557–572
DOI: https://doi.org/10.1090/spmj/1614
Bibliographic databases:
Document Type: Article
MSC: Primary 35J92; Secondary 35J20, 42B37
Language: English
Citation: A. Seesanea, I. E. Verbitsky, “Solutions in Lebesgue spaces to nonlinear elliptic equations with subnatural growth terms”, Algebra i Analiz, 31:3 (2019), 216–238; St. Petersburg Math. J., 31:3 (2020), 557–572
Citation in format AMSBIB
\Bibitem{SeeVer19}
\by A.~Seesanea, I.~E.~Verbitsky
\paper Solutions in Lebesgue spaces to nonlinear elliptic equations with subnatural growth terms
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 3
\pages 216--238
\mathnet{http://mi.mathnet.ru/aa1659}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 3
\pages 557--572
\crossref{https://doi.org/10.1090/spmj/1614}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000531807300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065627749}
Linking options:
  • https://www.mathnet.ru/eng/aa1659
  • https://www.mathnet.ru/eng/aa/v31/i3/p216
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024