|
This article is cited in 5 scientific papers (total in 5 papers)
Research Papers
Solutions in Lebesgue spaces to nonlinear elliptic equations with subnatural growth terms
A. Seesaneaa, I. E. Verbitskyb a Department of Mathematics, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
b Department of Mathematics, University of Missouri, Columbia, Missouri 65211, USA
Abstract:
The paper is devoted to the existence problem for positive solutions $ {u \in L^{r}(\mathbb{R}^{n})}$, $ 0<r<\infty $, to the quasilinear elliptic equation
$$
-\Delta _{p} u = \sigma u^{q} \text { in } \mathbb{R}^n
$$
in the subnatural growth case $ 0<q< p-1$, where $ \Delta _{p}u = \mathrm {div}( \vert\nabla u\vert^{p-2} \nabla u )$ is the $ p$-Laplacian with $ 1<p<\infty $, and $ \sigma $ is a nonnegative measurable function (or measure) on $ \mathbb{R}^n$.
The techniques rely on a study of general integral equations involving nonlinear potentials and related weighted norm inequalities. They are applicable to more general quasilinear elliptic operators in place of $ \Delta _{p}$ such as the $ \mathcal {A}$-Laplacian $ \mathrm {div} \mathcal {A}(x,\nabla u)$, or the fractional Laplacian $ (-\Delta )^{\alpha }$ on $ \mathbb{R}^n$, as well as linear uniformly elliptic operators with bounded measurable coefficients $ \mathrm {div} (\mathcal {A} \nabla u)$ on an arbitrary domain $ \Omega \subseteq \mathbb{R}^n$ with a positive Green function.
Keywords:
quasilinear elliptic equation, measure data, $p$-Laplacian, fractional Laplacian, Wolff potential, Green function.
Received: 01.11.2018
Citation:
A. Seesanea, I. E. Verbitsky, “Solutions in Lebesgue spaces to nonlinear elliptic equations with subnatural growth terms”, Algebra i Analiz, 31:3 (2019), 216–238; St. Petersburg Math. J., 31:3 (2020), 557–572
Linking options:
https://www.mathnet.ru/eng/aa1659 https://www.mathnet.ru/eng/aa/v31/i3/p216
|
|