Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 3, Pages 170–183 (Mi aa1657)  

Research Papers

The floating-body problem: an integro-differential equation without irregular frequencies

N. Kuznetsov

Laboratory for Mathematical Modelling of Wave Phenomena, Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 199178, St. Petersburg, V.O., Bolshoy pr., 61 Russian Federation
References:
Abstract: The linear boundary value problem under consideration describes time-harmonic motion of water in a horizontal three-dimensional layer of constant depth in the presence of an obstacle adjacent to the upper side of the layer (floating body). This problem for a complex-valued harmonic function involves mixed boundary conditions and a radiation condition at infinity. Under rather general geometric assumptions the existence of a unique solution is proved for all values of the problem's nonnegative parameter related to the frequency of oscillations. The proof is based on the representation of a solution as a sum of simple- and double-layer potentials with densities distributed over the obstacle's surface, thus reducing the problem to an indefinite integro-differential equation. The latter is shown to be soluble for all continuous right-hand side terms, for which purpose S. G. Krein's theorem about indefinite equations is used.
Keywords: potential representations, integral operators, integro-differential equation.
Received: 20.08.2018
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 3, Pages 521–531
DOI: https://doi.org/10.1090/spmj/1612
Bibliographic databases:
Document Type: Article
MSC: Primary 31B10; Secondary 76B15, 35Q35
Language: English
Citation: N. Kuznetsov, “The floating-body problem: an integro-differential equation without irregular frequencies”, Algebra i Analiz, 31:3 (2019), 170–183; St. Petersburg Math. J., 31:3 (2020), 521–531
Citation in format AMSBIB
\Bibitem{Kuz19}
\by N.~Kuznetsov
\paper The floating-body problem: an integro-differential equation without irregular frequencies
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 3
\pages 170--183
\mathnet{http://mi.mathnet.ru/aa1657}
\elib{https://elibrary.ru/item.asp?id=43305262}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 3
\pages 521--531
\crossref{https://doi.org/10.1090/spmj/1612}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000531807300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085752934}
Linking options:
  • https://www.mathnet.ru/eng/aa1657
  • https://www.mathnet.ru/eng/aa/v31/i3/p170
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :23
    References:25
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024