Abstract:
On the sphere S2, the Lieb-Thirring inequalities are proved for orthonormal families of scalar and vector functions both on the whole sphere and on proper domains on S2. By way of applications, an explicit estimate is found for the dimension of the attractor of the Navier-Stokes system on a domain on the sphere with Dirichlet nonslip boundary conditions.
Keywords:
Lieb–Thirring inequalities, spectral inequalities on the sphere, Navier–Stokes equations, attractors.
Citation:
A. Ilyin, A. Laptev, “Lieb-Thirring inequalities on the sphere”, Algebra i Analiz, 31:3 (2019), 116–135; St. Petersburg Math. J., 31:3 (2020), 479–493
\Bibitem{IlyLap19}
\by A.~Ilyin, A.~Laptev
\paper Lieb-Thirring inequalities on the sphere
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 3
\pages 116--135
\mathnet{http://mi.mathnet.ru/aa1654}
\elib{https://elibrary.ru/item.asp?id=43290370}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 3
\pages 479--493
\crossref{https://doi.org/10.1090/spmj/1609}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000531807300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085754258}
Linking options:
https://www.mathnet.ru/eng/aa1654
https://www.mathnet.ru/eng/aa/v31/i3/p116
This publication is cited in the following 4 articles:
Edward McDonald, Raphaël Ponge, “Dixmier trace formulas and negative eigenvalues of Schrödinger operators on curved noncommutative tori”, Advances in Mathematics, 412 (2023), 108815
Edward McDonald, Raphaël Ponge, “Cwikel estimates and negative eigenvalues of Schrödinger operators on noncommutative tori”, Journal of Mathematical Physics, 63:4 (2022)
A. Ilyin, A. Laptev, S. Zelik, “Lieb-thirring Constant on the Sphere and on the Torus”, J. Funct. Anal., 279:12 (2020), 108784
S. V. Zelik, A. A. Ilyin, A. A. Laptev, “On the Lieb–Thirring Constant on the Torus”, Math. Notes, 106:6 (2019), 1020–1024