Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 2, Pages 204–226 (Mi aa1644)  

This article is cited in 6 scientific papers (total in 6 papers)

Research Papers

On Landis' conjecture in the plane when the potential has an exponentially decaying negative part

B. Daveya, C. Kenigb, J.-N. Wangc

a Department of Mathematics, City College of New York, CUNY, NY 10031, New York, USA
b Department of Mathematics, University of Chicago, IL 60637, Chicago, USA
c Institute of Applied Mathematical Sciences, NCTS, National Taiwan University, Taipei 106, Taiwan
Full-text PDF (283 kB) Citations (6)
References:
Abstract: In this article, we continue our investigation into the unique continuation properties of real-valued solutions to elliptic equations in the plane. More precisely, we make another step towards proving a quantitative version of Landis' conjecture by establishing unique continuation at infinity estimates for solutions to equations of the form $ - \Delta u + V u = 0$ in $ \mathbb{R}^2$, where $ V = V_+ - V_-$, $ V_+ \in L^\infty $, and $ V_-$ is a nontrivial function that exhibits exponential decay at infinity. The main tool in the proof of this theorem is an order of vanishing estimate in combination with an iteration scheme. To prove the order of vanishing estimate, we establish a similarity principle for vector-valued Beltrami systems.
Keywords: Landis' conjecture, quantitative unique continuation, order of vanishing, vector-valued Beltrami system.
Funding agency Grant number
Simons Foundation 430198
National Science Foundation DMS-1265249
Ministry of Science and Technology, Taiwan 105-2115-M-002-014-MY3
The first author was partially supported by the Simons Foundation Grant 430198.
Received: 06.09.2018
English version:
St. Petersburg Mathematical Journal, 2019, Volume 31, Issue 2, Pages 337–353
DOI: https://doi.org/10.1090/spmj/1600
Bibliographic databases:
Document Type: Article
MSC: 35B60, 35J10
Language: English
Citation: B. Davey, C. Kenig, J.-N. Wang, “On Landis' conjecture in the plane when the potential has an exponentially decaying negative part”, Algebra i Analiz, 31:2 (2019), 204–226; St. Petersburg Math. J., 31:2 (2019), 337–353
Citation in format AMSBIB
\Bibitem{DavKenWan19}
\by B.~Davey, C.~Kenig, J.-N.~Wang
\paper On Landis' conjecture in the plane when the potential has an exponentially decaying negative part
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 2
\pages 204--226
\mathnet{http://mi.mathnet.ru/aa1644}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 31
\issue 2
\pages 337--353
\crossref{https://doi.org/10.1090/spmj/1600}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000515138700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106844716}
Linking options:
  • https://www.mathnet.ru/eng/aa1644
  • https://www.mathnet.ru/eng/aa/v31/i2/p204
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :22
    References:41
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024