Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 2, Pages 174–188 (Mi aa1642)  

Research Papers

Bounded point derivations on certain function spaces

J. E. Brennan

Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA
References:
Abstract: Let $ X$ be a compact nowhere dense subset of the complex plane $ \mathbb{C}$, and let $ dA$ denote two-dimensional Lebesgue (or area) measure in $ \mathbb{C}$. Denote by $ \mathcal {R}(X)$ the set of all rational functions having no poles on $ X$, and by $ R^p(X)$ the closure of $ \mathcal {R}(X)$ in $ L^p(X,dA)$ whenever $ 1\leq p<\infty $. The purpose of this paper is to study the relationship between bounded derivations on $ R^p(X)$ and the existence of approximate derivatives provided $ 2<p<\infty $, and to draw attention to an anomaly that occurs when $ p=2$.
Keywords: point derivation, approximate derivative, monogeneity, capacity.
Received: 13.11.2018
English version:
St. Petersburg Mathematical Journal, 2019, Volume 31, Issue 2, Pages 313–323
DOI: https://doi.org/10.1090/spmj/1598
Bibliographic databases:
Document Type: Article
MSC: Primary 41A15; Secondary 30H10
Language: English
Citation: J. E. Brennan, “Bounded point derivations on certain function spaces”, Algebra i Analiz, 31:2 (2019), 174–188; St. Petersburg Math. J., 31:2 (2019), 313–323
Citation in format AMSBIB
\Bibitem{Bre19}
\by J.~E.~Brennan
\paper Bounded point derivations on certain function spaces
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 2
\pages 174--188
\mathnet{http://mi.mathnet.ru/aa1642}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 31
\issue 2
\pages 313--323
\crossref{https://doi.org/10.1090/spmj/1598}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000515138700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106836889}
Linking options:
  • https://www.mathnet.ru/eng/aa1642
  • https://www.mathnet.ru/eng/aa/v31/i2/p174
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :23
    References:48
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024