Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 2, Pages 3–50 (Mi aa1636)  

This article is cited in 3 scientific papers (total in 3 papers)

Expository Surveys

Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space

J. M. Martella, D. Mitreab, I. Mitreac, M. Mitreab

a Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, C/Nicolás Cabrera, 13-15, E-28049 Madrid, Spain
b Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
c Department of Mathematics, Temple University, 1805 N. Broad Street, Philadelphia, PA 19122, USA
Full-text PDF (444 kB) Citations (3)
References:
Abstract: This is a survey of recent progress in a program which to date has produced several publications and is aimed at proving general Fatou-type results and establishing the well-posedness of a variety of boundary value problems in the upper half-space ${\mathbb{R}}^n_{+}$ for second-order, homogeneous, constant complex coefficient, elliptic systems $L$, formulated in a manner that emphasizes pointwise nontangential boundary traces of the null-solutions of $L$ in ${\mathbb{R}}^n_{+}$.
Keywords: Fatou-type theorem, Dirichlet boundary value problem, elliptic system, Poisson kernel, nontangential maximal operator, nontangential boundary trace, Muckenhoupt weights, Hardy space, bounded mean oscillations, vanishing mean oscillations, subcritical growth, sublinear growth.
Funding agency Grant number
European Union's Seventh Framework Programme 615112 HAPDEGMT
Ministerio de Economía y Competitividad de España SEV-2015-0554
Simons Foundation 426669
318658
281566
The first author acknowledges that the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC agreement no. 615112 HAPDEGMT. He also acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa Programme for Centres of Excellence in R&D” (SEV-2015-0554).
Received: 25.11.2018
English version:
St. Petersburg Mathematical Journal, 2019, Volume 31, Issue 2, Pages 189–222
DOI: https://doi.org/10.1090/spmj/1592
Bibliographic databases:
Document Type: Article
MSC: Primary 31A20, 35C15, 35J57, 42B37, 46E30; Secondary 35B65, 42B25, 42B30, 42B35
Language: English
Citation: J. M. Martell, D. Mitrea, I. Mitrea, M. Mitrea, “Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space”, Algebra i Analiz, 31:2 (2019), 3–50; St. Petersburg Math. J., 31:2 (2019), 189–222
Citation in format AMSBIB
\Bibitem{MarMitMit19}
\by J.~M.~Martell, D.~Mitrea, I.~Mitrea, M.~Mitrea
\paper Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 2
\pages 3--50
\mathnet{http://mi.mathnet.ru/aa1636}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 31
\issue 2
\pages 189--222
\crossref{https://doi.org/10.1090/spmj/1592}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000515138700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106855101}
Linking options:
  • https://www.mathnet.ru/eng/aa1636
  • https://www.mathnet.ru/eng/aa/v31/i2/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :24
    References:38
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024