Abstract:
An algebraic commutative ring $T$-spectrum $\mathbf{BO}$ is constructed such that it is stably fibrant, $(8,4)$-periodic, and on $\mathcal Sm\mathcal Op/S$ the cohomology theory $(X,U)\mapsto\mathbf{BO}^{p,q}(X_+/U_+)$ and Schlichting's Hermitian $K$-theory functor $(X,U)\mapsto KO^{[q]}_{2q-p}(X,U)$ are canonically isomorphic. The motivic weak equivalence $\mathbb Z\times HGr\xrightarrow\sim\mathbf{KSp}$ relating the infinite quaternionic Grassmannian to symplectic $K$-theory is used to equip $\mathbf{BO}$ with the structure of a commutative monoid in the motivic stable homotopy category. When the base scheme is $\operatorname{Spec}\mathbb Z[\frac12]$, this monoid structure and the induced ring structure on the cohomology theory $\mathbf{BO}^{*,*}$ are unique structures compatible with the products
$$
KO^{[2m]}_0(X)\times KO^{[2n]}_0(Y)\to KO^{[2m+2n]}_0(X\times Y)
$$
on Grothendieck–Witt groups induced by the tensor product of symmetric chain complexes. The cohomology theory is bigraded commutative with the switch map acting on $\mathbf{BO}^{*,*}(T\wedge T)$ in the same way as multiplication by the Grothendieck–Witt class of the symmetric bilinear space $\langle-1\rangle$.
The first author gratefully acknowledges excellent working conditions and support provided by Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice Sophia Antipolis, and by the RCN Frontier Research Group Project № 250399 “Motivic Hopf equations” at University of Oslo, and by the RFBR-grant № 16-01-00750.
Citation:
I. Panin, C. Walter, “On the motivic commutative ring spectrum $\mathbf{BO}$”, Algebra i Analiz, 30:6 (2018), 43–96; St. Petersburg Math. J., 30:6 (2019), 933–972
\Bibitem{PanWal18}
\by I.~Panin, C.~Walter
\paper On the motivic commutative ring spectrum~$\mathbf{BO}$
\jour Algebra i Analiz
\yr 2018
\vol 30
\issue 6
\pages 43--96
\mathnet{http://mi.mathnet.ru/aa1622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3882540}
\elib{https://elibrary.ru/item.asp?id=41712326}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 6
\pages 933--972
\crossref{https://doi.org/10.1090/spmj/1578}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000486691100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073711411}
Linking options:
https://www.mathnet.ru/eng/aa1622
https://www.mathnet.ru/eng/aa/v30/i6/p43
This publication is cited in the following 16 articles:
Jean Fasel, Olivier Haution, “The stable Adams operations on Hermitian
K-theory”, Geom. Topol., 29:1 (2025), 127
Lukas F. Bröring, Anna M. Viergever, “Quadratic Euler characteristic of symmetric powers of curves”, manuscripta math., 176:2 (2025)
David Coulette, Frédéric Déglise, Jean Fasel, Jens Hornbostel, “Formal ternary laws and Buchstaber's 2-groups”, manuscripta math., 174:1-2 (2024), 453
Serge Yagunov, “Grothendieck–Witt groups of henselian
valuation rings”, Ann. K-Th., 9:1 (2024), 23
Margaret Bilu, Wei Ho, Padmavathi Srinivasan, Isabel Vogt, Kirsten Wickelgren, “Quadratic enrichment of the logarithmic derivative of the zeta function”, Trans. Amer. Math. Soc. Ser. B, 11:33 (2024), 1183
Adeel A. Khan, Charanya Ravi, “Generalized cohomology theories for algebraic stacks”, Advances in Mathematics, 458 (2024), 109975
A. E. Druzhinin, “Cousin complex on the complement to the strict normal-crossing divisor in a local essentially smooth scheme over a field”, Sb. Math., 214:2 (2023), 210–225
Frédéric Déglise, Jean Fasel, “THE BOREL CHARACTER”, J. Inst. Math. Jussieu, 22:2 (2023), 747
St. Petersburg Math. J., 34:1 (2023), 109–141
F. Deglise, F. Jin, A. A. Khan, “Fundamental classes in motivic homotopy theory”, J. Eur. Math. Soc., 23:12 (2021), 3935–3993
F. Deglise, J. Fasel, F. Jin, A. A. Khan, “On the rational motivic homotopy category”, J. Ecole Polytech.-Math., 8 (2021), 533–583
St. Petersburg Math. J., 33:1 (2022), 97–140
A. Ananyevskiy, “Sl-oriented cohomology theories”, Motivic Homotopy Theory and Refined Enumerative Geometry, Contemporary Mathematics, 745, eds. F. Binda, M. Levine, M. Nguyen, O. Rondigs, Amer. Math. Soc., 2020, 1–19
M. Levine, A. Raksit, “Motivic Gauss-Bonnet formulas”, Algebr. Number Theory, 14:7 (2020), 1801–1851
M. Levine, “Aspects of enumerative geometry with quadratic forms”, Doc. Math., 25 (2020), 2179–2239
I. A. Panin, C. Walter, “On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory”, Proc. Steklov Inst. Math., 307 (2019), 162–173