Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2018, Volume 30, Issue 6, Pages 43–96 (Mi aa1622)  

This article is cited in 14 scientific papers (total in 14 papers)

Research Papers

On the motivic commutative ring spectrum $\mathbf{BO}$

I. Panina, C. Walterb

a St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
b Laboratoire J. A. Dieudonné, UMR 6621 du CNRS, Université de Nice — Sophia Antipolis, 28 Avenue Valrose, 06108 Nice Cedex 02, France
References:
Abstract: An algebraic commutative ring $T$-spectrum $\mathbf{BO}$ is constructed such that it is stably fibrant, $(8,4)$-periodic, and on $\mathcal Sm\mathcal Op/S$ the cohomology theory $(X,U)\mapsto\mathbf{BO}^{p,q}(X_+/U_+)$ and Schlichting's Hermitian $K$-theory functor $(X,U)\mapsto KO^{[q]}_{2q-p}(X,U)$ are canonically isomorphic. The motivic weak equivalence $\mathbb Z\times HGr\xrightarrow\sim\mathbf{KSp}$ relating the infinite quaternionic Grassmannian to symplectic $K$-theory is used to equip $\mathbf{BO}$ with the structure of a commutative monoid in the motivic stable homotopy category. When the base scheme is $\operatorname{Spec}\mathbb Z[\frac12]$, this monoid structure and the induced ring structure on the cohomology theory $\mathbf{BO}^{*,*}$ are unique structures compatible with the products
$$ KO^{[2m]}_0(X)\times KO^{[2n]}_0(Y)\to KO^{[2m+2n]}_0(X\times Y) $$
on Grothendieck–Witt groups induced by the tensor product of symmetric chain complexes. The cohomology theory is bigraded commutative with the switch map acting on $\mathbf{BO}^{*,*}(T\wedge T)$ in the same way as multiplication by the Grothendieck–Witt class of the symmetric bilinear space $\langle-1\rangle$.
Keywords: Hermitian $K$-theory, Grothendieck–Witt groups, symplectic orientation.
Funding agency Grant number
Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice Sophia Antipolis
RCN Frontier Research Group at University of Oslo 250399
Russian Foundation for Basic Research 16-01-00750
The first author gratefully acknowledges excellent working conditions and support provided by Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice Sophia Antipolis, and by the RCN Frontier Research Group Project № 250399 “Motivic Hopf equations” at University of Oslo, and by the RFBR-grant № 16-01-00750.
Received: 24.04.2018
English version:
St. Petersburg Mathematical Journal, 2019, Volume 30, Issue 6, Pages 933–972
DOI: https://doi.org/10.1090/spmj/1578
Bibliographic databases:
Document Type: Article
MSC: 14C15
Language: English
Citation: I. Panin, C. Walter, “On the motivic commutative ring spectrum $\mathbf{BO}$”, Algebra i Analiz, 30:6 (2018), 43–96; St. Petersburg Math. J., 30:6 (2019), 933–972
Citation in format AMSBIB
\Bibitem{PanWal18}
\by I.~Panin, C.~Walter
\paper On the motivic commutative ring spectrum~$\mathbf{BO}$
\jour Algebra i Analiz
\yr 2018
\vol 30
\issue 6
\pages 43--96
\mathnet{http://mi.mathnet.ru/aa1622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3882540}
\elib{https://elibrary.ru/item.asp?id=41712326}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 6
\pages 933--972
\crossref{https://doi.org/10.1090/spmj/1578}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000486691100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073711411}
Linking options:
  • https://www.mathnet.ru/eng/aa1622
  • https://www.mathnet.ru/eng/aa/v30/i6/p43
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Àëãåáðà è àíàëèç St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:354
    Full-text PDF :59
    References:36
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024