Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2018, Volume 30, Issue 6, Pages 43–96 (Mi aa1622)  

This article is cited in 16 scientific papers (total in 16 papers)

Research Papers

On the motivic commutative ring spectrum $\mathbf{BO}$

I. Panina, C. Walterb

a St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
b Laboratoire J. A. Dieudonné, UMR 6621 du CNRS, Université de Nice — Sophia Antipolis, 28 Avenue Valrose, 06108 Nice Cedex 02, France
References:
Abstract: An algebraic commutative ring $T$-spectrum $\mathbf{BO}$ is constructed such that it is stably fibrant, $(8,4)$-periodic, and on $\mathcal Sm\mathcal Op/S$ the cohomology theory $(X,U)\mapsto\mathbf{BO}^{p,q}(X_+/U_+)$ and Schlichting's Hermitian $K$-theory functor $(X,U)\mapsto KO^{[q]}_{2q-p}(X,U)$ are canonically isomorphic. The motivic weak equivalence $\mathbb Z\times HGr\xrightarrow\sim\mathbf{KSp}$ relating the infinite quaternionic Grassmannian to symplectic $K$-theory is used to equip $\mathbf{BO}$ with the structure of a commutative monoid in the motivic stable homotopy category. When the base scheme is $\operatorname{Spec}\mathbb Z[\frac12]$, this monoid structure and the induced ring structure on the cohomology theory $\mathbf{BO}^{*,*}$ are unique structures compatible with the products
$$ KO^{[2m]}_0(X)\times KO^{[2n]}_0(Y)\to KO^{[2m+2n]}_0(X\times Y) $$
on Grothendieck–Witt groups induced by the tensor product of symmetric chain complexes. The cohomology theory is bigraded commutative with the switch map acting on $\mathbf{BO}^{*,*}(T\wedge T)$ in the same way as multiplication by the Grothendieck–Witt class of the symmetric bilinear space $\langle-1\rangle$.
Keywords: Hermitian $K$-theory, Grothendieck–Witt groups, symplectic orientation.
Funding agency Grant number
Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice Sophia Antipolis
RCN Frontier Research Group at University of Oslo 250399
Russian Foundation for Basic Research 16-01-00750
The first author gratefully acknowledges excellent working conditions and support provided by Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice Sophia Antipolis, and by the RCN Frontier Research Group Project № 250399 “Motivic Hopf equations” at University of Oslo, and by the RFBR-grant № 16-01-00750.
Received: 24.04.2018
English version:
St. Petersburg Mathematical Journal, 2019, Volume 30, Issue 6, Pages 933–972
DOI: https://doi.org/10.1090/spmj/1578
Bibliographic databases:
Document Type: Article
MSC: 14C15
Language: English
Citation: I. Panin, C. Walter, “On the motivic commutative ring spectrum $\mathbf{BO}$”, Algebra i Analiz, 30:6 (2018), 43–96; St. Petersburg Math. J., 30:6 (2019), 933–972
Citation in format AMSBIB
\Bibitem{PanWal18}
\by I.~Panin, C.~Walter
\paper On the motivic commutative ring spectrum~$\mathbf{BO}$
\jour Algebra i Analiz
\yr 2018
\vol 30
\issue 6
\pages 43--96
\mathnet{http://mi.mathnet.ru/aa1622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3882540}
\elib{https://elibrary.ru/item.asp?id=41712326}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 6
\pages 933--972
\crossref{https://doi.org/10.1090/spmj/1578}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000486691100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073711411}
Linking options:
  • https://www.mathnet.ru/eng/aa1622
  • https://www.mathnet.ru/eng/aa/v30/i6/p43
  • This publication is cited in the following 16 articles:
    1. Jean Fasel, Olivier Haution, “The stable Adams operations on Hermitian K-theory”, Geom. Topol., 29:1 (2025), 127  crossref
    2. Lukas F. Bröring, Anna M. Viergever, “Quadratic Euler characteristic of symmetric powers of curves”, manuscripta math., 176:2 (2025)  crossref
    3. David Coulette, Frédéric Déglise, Jean Fasel, Jens Hornbostel, “Formal ternary laws and Buchstaber's 2-groups”, manuscripta math., 174:1-2 (2024), 453  crossref
    4. Serge Yagunov, “Grothendieck–Witt groups of henselian valuation rings”, Ann. K-Th., 9:1 (2024), 23  crossref
    5. Margaret Bilu, Wei Ho, Padmavathi Srinivasan, Isabel Vogt, Kirsten Wickelgren, “Quadratic enrichment of the logarithmic derivative of the zeta function”, Trans. Amer. Math. Soc. Ser. B, 11:33 (2024), 1183  crossref
    6. Adeel A. Khan, Charanya Ravi, “Generalized cohomology theories for algebraic stacks”, Advances in Mathematics, 458 (2024), 109975  crossref
    7. A. E. Druzhinin, “Cousin complex on the complement to the strict normal-crossing divisor in a local essentially smooth scheme over a field”, Sb. Math., 214:2 (2023), 210–225  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. Frédéric Déglise, Jean Fasel, “THE BOREL CHARACTER”, J. Inst. Math. Jussieu, 22:2 (2023), 747  crossref
    9. St. Petersburg Math. J., 34:1 (2023), 109–141  mathnet  crossref  mathscinet
    10. F. Deglise, F. Jin, A. A. Khan, “Fundamental classes in motivic homotopy theory”, J. Eur. Math. Soc., 23:12 (2021), 3935–3993  crossref  mathscinet  zmath  isi  scopus
    11. F. Deglise, J. Fasel, F. Jin, A. A. Khan, “On the rational motivic homotopy category”, J. Ecole Polytech.-Math., 8 (2021), 533–583  crossref  mathscinet  zmath  isi
    12. St. Petersburg Math. J., 33:1 (2022), 97–140  mathnet  crossref
    13. A. Ananyevskiy, “Sl-oriented cohomology theories”, Motivic Homotopy Theory and Refined Enumerative Geometry, Contemporary Mathematics, 745, eds. F. Binda, M. Levine, M. Nguyen, O. Rondigs, Amer. Math. Soc., 2020, 1–19  crossref  mathscinet  zmath  isi
    14. M. Levine, A. Raksit, “Motivic Gauss-Bonnet formulas”, Algebr. Number Theory, 14:7 (2020), 1801–1851  crossref  mathscinet  zmath  isi  scopus
    15. M. Levine, “Aspects of enumerative geometry with quadratic forms”, Doc. Math., 25 (2020), 2179–2239  mathscinet  zmath  isi
    16. I. A. Panin, C. Walter, “On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory”, Proc. Steklov Inst. Math., 307 (2019), 162–173  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:414
    Full-text PDF :83
    References:53
    First page:8
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025