|
This article is cited in 14 scientific papers (total in 14 papers)
Research Papers
On the motivic commutative ring spectrum $\mathbf{BO}$
I. Panina, C. Walterb a St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
b Laboratoire J. A. Dieudonné, UMR 6621 du CNRS, Université de Nice — Sophia Antipolis, 28 Avenue Valrose, 06108 Nice Cedex 02, France
Abstract:
An algebraic commutative ring $T$-spectrum $\mathbf{BO}$ is constructed such that it is stably fibrant, $(8,4)$-periodic, and on $\mathcal Sm\mathcal Op/S$ the cohomology theory $(X,U)\mapsto\mathbf{BO}^{p,q}(X_+/U_+)$ and Schlichting's Hermitian $K$-theory functor $(X,U)\mapsto KO^{[q]}_{2q-p}(X,U)$ are canonically isomorphic. The motivic weak equivalence $\mathbb Z\times HGr\xrightarrow\sim\mathbf{KSp}$ relating the infinite quaternionic Grassmannian to symplectic $K$-theory is used to equip $\mathbf{BO}$ with the structure of a commutative monoid in the motivic stable homotopy category. When the base scheme is $\operatorname{Spec}\mathbb Z[\frac12]$, this monoid structure and the induced ring structure on the cohomology theory $\mathbf{BO}^{*,*}$ are unique structures compatible with the products
$$
KO^{[2m]}_0(X)\times KO^{[2n]}_0(Y)\to KO^{[2m+2n]}_0(X\times Y)
$$
on Grothendieck–Witt groups induced by the tensor product of symmetric chain complexes. The cohomology theory is bigraded commutative with the switch map acting on $\mathbf{BO}^{*,*}(T\wedge T)$ in the same way as multiplication by the Grothendieck–Witt class of the symmetric bilinear space $\langle-1\rangle$.
Keywords:
Hermitian $K$-theory, Grothendieck–Witt groups, symplectic orientation.
Received: 24.04.2018
Citation:
I. Panin, C. Walter, “On the motivic commutative ring spectrum $\mathbf{BO}$”, Algebra i Analiz, 30:6 (2018), 43–96; St. Petersburg Math. J., 30:6 (2019), 933–972
Linking options:
https://www.mathnet.ru/eng/aa1622 https://www.mathnet.ru/eng/aa/v30/i6/p43
|
Statistics & downloads: |
Abstract page: | 354 | Full-text PDF : | 59 | References: | 36 | First page: | 7 |
|