Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2018, Volume 30, Issue 4, Pages 107–139 (Mi aa1610)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

The variance of the $\ell_p^n$-norm of the Gaussian vector, and Dvoretzky's theorem

A. Lytovaa, K. Tikhomirovb

a University of Opole, Poland
b Princeton University, NJ
Full-text PDF (354 kB) Citations (1)
References:
Abstract: Let $n$ be a large integer, and let $G$ be the standard Gaussian vector in $\mathbb R^n$. Paouris, Valettas and Zinn (2015) showed that for all $p\in[1,c\log n]$, the variance of the $\ell_p^n$-norm of $G$ is equivalent, up to a constant multiple, to $\frac{2^p}pn^{2/p-1}$, and for $p\in[C\log n,\infty]$, to $(\log n)^{-1}$. Here, $C,c>0$ are universal constants. That result left open the question of estimating the variance for $p$ logarithmic in $n$. In this paper, the question is resolved by providing a complete characterization of $\mathbf{Var}\|G\|_p$ for all $p$. It is shown that there exist two transition points (windows) in which the behavior of $\mathbf{Var}\|G\|_p$ changes significantly. Some implications of the results are discussed in the context of random Dvoretzky's theorem for $\ell_p^n$.
Keywords: $\ell_p^n$ spaces, variance of $\ell_p$ norm, Dvoretzky's theorem, order statistics.
Funding agency Grant number
Simons Foundation
The research was partially supported by the Simons Foundation.
Received: 13.02.2018
English version:
St. Petersburg Mathematical Journal, 2019, Volume 30, Issue 4, Pages 699–722
DOI: https://doi.org/10.1090/spmj/1566
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Lytova, K. Tikhomirov, “The variance of the $\ell_p^n$-norm of the Gaussian vector, and Dvoretzky's theorem”, Algebra i Analiz, 30:4 (2018), 107–139; St. Petersburg Math. J., 30:4 (2019), 699–722
Citation in format AMSBIB
\Bibitem{LytTik18}
\by A.~Lytova, K.~Tikhomirov
\paper The variance of the $\ell_p^n$-norm of the Gaussian vector, and Dvoretzky's theorem
\jour Algebra i Analiz
\yr 2018
\vol 30
\issue 4
\pages 107--139
\mathnet{http://mi.mathnet.ru/aa1610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3851373}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 4
\pages 699--722
\crossref{https://doi.org/10.1090/spmj/1566}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470732100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067021073}
Linking options:
  • https://www.mathnet.ru/eng/aa1610
  • https://www.mathnet.ru/eng/aa/v30/i4/p107
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :35
    References:34
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024