Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2018, Volume 30, Issue 3, Pages 286–310 (Mi aa1605)  

Research Papers

A new representation of Hankel operators and its spectral consequences

D. R. Yafaevab

a Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
b St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia
References:
Abstract: In the paper, the Hankel operators $H$ are represented as pseudo-differential operators $A$ in the space of functions defined on the whole axis. The amplitudes of such operators $A$ have a very special structure: they are products of functions of a one variable only. This representation has numerous spectral consequences, both for compact Hankel operators and for operators with the continuous spectrum.
Keywords: Hankel operators, spectral properties, absolutely continuous and discrete spectra, asymptotics of eigenvalues.
Funding agency Grant number
Russian Science Foundation 17-11-01126
Supported by Russian Science Foundation, project № 17-11-01126.
Received: 12.12.2017
English version:
St. Petersburg Mathematical Journal, 2019, Volume 30, Issue 3, Pages 601–619
DOI: https://doi.org/10.1090/spmj/1561
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. R. Yafaev, “A new representation of Hankel operators and its spectral consequences”, Algebra i Analiz, 30:3 (2018), 286–310; St. Petersburg Math. J., 30:3 (2019), 601–619
Citation in format AMSBIB
\Bibitem{Yaf18}
\by D.~R.~Yafaev
\paper A new representation of Hankel operators and its spectral consequences
\jour Algebra i Analiz
\yr 2018
\vol 30
\issue 3
\pages 286--310
\mathnet{http://mi.mathnet.ru/aa1605}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3812009}
\elib{https://elibrary.ru/item.asp?id=32855075}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 3
\pages 601--619
\crossref{https://doi.org/10.1090/spmj/1561}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464555700014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064733333}
Linking options:
  • https://www.mathnet.ru/eng/aa1605
  • https://www.mathnet.ru/eng/aa/v30/i3/p286
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025