Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2018, Volume 30, Issue 3, Pages 112–128 (Mi aa1598)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity

V. Kozlova, N. G. Kuznetsovb

a Department of Mathematics, Linköping University, S-581 83, Linköping, Sweden
b Laboratory for Mathematical Modelling of Wave Phenomena, Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr., 61, V.O., 199178, St. Petersburg, Russia
Full-text PDF (248 kB) Citations (3)
References:
Abstract: A comparison theorem is proved for a pair of solutions that satisfy opposite nonlinear differential inequalities in a weak sense. The nonlinearity is of the form $f(u)$ with $f$ belonging to the class $L^p_\mathrm{loc}$ and the solutions are assumed to have nonvanishing gradients in the domain, where the inequalities are considered. The comparison theorem is applied to the problem describing steady, periodic water waves with vorticity in the case of arbitrary free-surface profiles including overhanging ones. Bounds for these profiles as well as streamfunctions and admissible values of the total head are obtained.
Keywords: comparison theorem, nonlinear differential inequality, partial hodograph transform in $n$ dimensions, periodic steady water waves with vorticity, streamfunction.
Funding agency Grant number
Swedish Research Council EO418401
Magnus Ehrnrooth Foundation
Linköping University
V. K. was supported by the Swedish Research Council (VR) through the grant [EO418401]. N. K. acknowledges the support from the G. S. Magnuson's Foundation of the Royal Swedish Academy of Sciences and Linköping University.
Received: 10.10.2017
English version:
St. Petersburg Mathematical Journal, 2019, Volume 30, Issue 3, Pages 471–483
DOI: https://doi.org/10.1090/spmj/1554
Bibliographic databases:
Document Type: Article
MSC: Primary 35P99; Secondary 76B15, 35Q35
Language: English
Citation: V. Kozlov, N. G. Kuznetsov, “A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity”, Algebra i Analiz, 30:3 (2018), 112–128; St. Petersburg Math. J., 30:3 (2019), 471–483
Citation in format AMSBIB
\Bibitem{KozKuz18}
\by V.~Kozlov, N.~G.~Kuznetsov
\paper A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity
\jour Algebra i Analiz
\yr 2018
\vol 30
\issue 3
\pages 112--128
\mathnet{http://mi.mathnet.ru/aa1598}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3812002}
\elib{https://elibrary.ru/item.asp?id=32855067}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 3
\pages 471--483
\crossref{https://doi.org/10.1090/spmj/1554}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464555700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064733998}
Linking options:
  • https://www.mathnet.ru/eng/aa1598
  • https://www.mathnet.ru/eng/aa/v30/i3/p112
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024