Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2017, Volume 29, Issue 6, Pages 159–177 (Mi aa1564)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Binomials whose dilations generate $H^2(\mathbb D)$

N. K. Nikolskiab

a Institute of Mathematics, University of Bordeaux, Bordeaux, France
b Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (274 kB) Citations (3)
References:
Abstract: This note is about the completeness of the function families
$$ \{z^n(\lambda-z^n)^N\colon n=1,2,\dots\} $$
in the Hardy space $H^2_0(\mathbb D)$, and some related questions. It is shown that for $|\lambda|>R(N)$ the family is complete in $H^2_0(\mathbb D)$ (and often is a Riesz basis of $H^2_0$), whereas for $|\lambda|<r(N)$ it is not, where both radii $r(N)\leq R(N)$ tends to infinity and behave more or less as $N$ (as $N\to\infty$). Several results are also obtained for more general binomials $\{z^n(1-\frac1\lambda z^n)^\nu\colon n=1,2,\dots\}$ where $|\lambda|\geq1$ and $\nu\in\mathbb C$.
Keywords: Hardy spaces, completeness of dilations, Riesz basis, Hilbert multidisc, Bohr transform, binomial functions.
Funding agency Grant number
Russian Science Foundation 14-41-00010
This research is supported by the project “Spaces of analytic functions and singular integrals”, RSF grant 14-41-00010.
Received: 09.08.2017
English version:
St. Petersburg Mathematical Journal, 2018, Volume 29, Issue 6, Pages 979–992
DOI: https://doi.org/10.1090/spmj/1522
Bibliographic databases:
Document Type: Article
MSC: 30H10
Language: English
Citation: N. K. Nikolski, “Binomials whose dilations generate $H^2(\mathbb D)$”, Algebra i Analiz, 29:6 (2017), 159–177; St. Petersburg Math. J., 29:6 (2018), 979–992
Citation in format AMSBIB
\Bibitem{Nik17}
\by N.~K.~Nikolski
\paper Binomials whose dilations generate~$H^2(\mathbb D)$
\jour Algebra i Analiz
\yr 2017
\vol 29
\issue 6
\pages 159--177
\mathnet{http://mi.mathnet.ru/aa1564}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3723813}
\elib{https://elibrary.ru/item.asp?id=30381772}
\transl
\jour St. Petersburg Math. J.
\yr 2018
\vol 29
\issue 6
\pages 979--992
\crossref{https://doi.org/10.1090/spmj/1522}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000444495400004}
Linking options:
  • https://www.mathnet.ru/eng/aa1564
  • https://www.mathnet.ru/eng/aa/v29/i6/p159
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :46
    References:39
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024