|
This article is cited in 2 scientific papers (total in 2 papers)
Research Papers
Heat traces and spectral zeta functions for $p$-adic Laplacians
L. F. Chacón-Cortésa, W. A. Zúñiga-Galindob a Pontificia Universidad Javeriana, Departamento de Matemáticas, Facultad de Ciencias, Cra. 7 No. 43-82, Bogotá Colombia
b Centro de Investigación y de Estudios Avanzados, Departamento de Matemáticas, Unidad Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, C.P. 76230, Querétaro, QRO, México
Abstract:
The study of the heat traces and spectral zeta functions for certain $p$-adic Laplacians is initiated. It is shown that the heat traces are given by $p$-adic integrals of Laplace type, and that the spectral zeta functions are $p$-adic integrals of Igusa type. Good estimates are found for the behaviour of the heat traces when the time tends to infinity, and for the asymptotics of the function counting the eigenvalues less than or equal to a given quantity.
Keywords:
heat traces, spectral zeta functions, Minakshisundaram–Pleijel zeta functions, $p$-adic heat equation, $p$-adic functional analysis.
Received: 15.04.2016
Citation:
L. F. Chacón-Cortés, W. A. Zúñiga-Galindo, “Heat traces and spectral zeta functions for $p$-adic Laplacians”, Algebra i Analiz, 29:3 (2017), 144–166; St. Petersburg Math. J., 29:3 (2018), 529–544
Linking options:
https://www.mathnet.ru/eng/aa1547 https://www.mathnet.ru/eng/aa/v29/i3/p144
|
|