Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2016, Volume 28, Issue 6, Pages 91–117 (Mi aa1532)  

This article is cited in 6 scientific papers (total in 6 papers)

Research Papers

Vector-valued boundedness of harmonic analysis operators

D. V. Rutsky

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (309 kB) Citations (6)
References:
Abstract: Let $S$ be a space of homogeneous type, $X$ a Banach lattice of measurable functions on $S \times \Omega$ with the Fatou property and nontrivial convexity, and $Y$ some Banach lattice of measurable functions with the Fatou property. Under the assumption that the Hardy–Littlewood maximal operator $M$ is bounded both in $X$ and $X’$, it is proved that the boundedness of $M$ in $X (Y)$ is equivalent to its boundedness in $\mathrm L_{s}(Y)$ for some (equivalently, for all) $1 < s < \infty$. With $S = \mathbb R^n$, the last condition is known as the Hardy–Littlewood property of $Y$ and is related to the $\mathrm {UMD}$ property. For lattices $X$ with nontrivial convexity and concavity, the UMD property implies the boundedness of all Calderón–Zygmund operators in $X (Y)$ and is equivalent to the boundedness of a single nondegenerate Calderón–Zygmund operator. The $\mathrm {UMD}$ property of $Y$ is characterized in terms of the $\mathrm A_{p}$-regularity of both $\mathrm L_{\infty } (Y)$ and $\mathrm L_{\infty } (Y’)$. The arguments are based on an improved version of the divisibility property for $\mathrm A_{p}$-regularity.
Keywords: $A_p$-regularity, BMO-regularity, Hardy-Littlewood maximal operator, Calderón–Zygmund operators.
Received: 25.07.2016
English version:
St. Petersburg Mathematical Journal, 2017, Volume 28, Issue 6, Pages 789–805
DOI: https://doi.org/10.1090/spmj/1474
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Rutsky, “Vector-valued boundedness of harmonic analysis operators”, Algebra i Analiz, 28:6 (2016), 91–117; St. Petersburg Math. J., 28:6 (2017), 789–805
Citation in format AMSBIB
\Bibitem{Rut16}
\by D.~V.~Rutsky
\paper Vector-valued boundedness of harmonic analysis operators
\jour Algebra i Analiz
\yr 2016
\vol 28
\issue 6
\pages 91--117
\mathnet{http://mi.mathnet.ru/aa1532}
\elib{https://elibrary.ru/item.asp?id=31061548}
\transl
\jour St. Petersburg Math. J.
\yr 2017
\vol 28
\issue 6
\pages 789--805
\crossref{https://doi.org/10.1090/spmj/1474}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412390800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030651096}
Linking options:
  • https://www.mathnet.ru/eng/aa1532
  • https://www.mathnet.ru/eng/aa/v28/i6/p91
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Àëãåáðà è àíàëèç St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :54
    References:55
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024