Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2017, Volume 29, Issue 1, Pages 237–278 (Mi aa1529)  

This article is cited in 11 scientific papers (total in 11 papers)

Research Papers

Sharp correspondence principle and quantum measurements

L. Charlesa, L. Polterovichb

a UMR 7586, Institut de Mathématiques de Jussieu– Paris Rive Gauche, Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
b Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
References:
Abstract: Sharp remainder bounds are proved for the Berezin–Toeplitz quantization and applications to semiclassical quantum measurements are presented.
Keywords: Berezin–Toeplitz quantization, symplectic manifold, quantum measurement.
Funding agency Grant number
Israel Science Foundation 178/13
European Research Council 338809
Partially supported by the Israel Science Foundation grant 178/13 and the European Research Council Advanced grant 338809.
Received: 13.10.2016
English version:
St. Petersburg Mathematical Journal, 2018, Volume 29, Issue 1, Pages 177–207
DOI: https://doi.org/10.1090/spmj/1488
Bibliographic databases:
Document Type: Article
Language: English
Citation: L. Charles, L. Polterovich, “Sharp correspondence principle and quantum measurements”, Algebra i Analiz, 29:1 (2017), 237–278; St. Petersburg Math. J., 29:1 (2018), 177–207
Citation in format AMSBIB
\Bibitem{ChaPol17}
\by L.~Charles, L.~Polterovich
\paper Sharp correspondence principle and quantum measurements
\jour Algebra i Analiz
\yr 2017
\vol 29
\issue 1
\pages 237--278
\mathnet{http://mi.mathnet.ru/aa1529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3660691}
\elib{https://elibrary.ru/item.asp?id=28960978}
\transl
\jour St. Petersburg Math. J.
\yr 2018
\vol 29
\issue 1
\pages 177--207
\crossref{https://doi.org/10.1090/spmj/1488}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000419174700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040026730}
Linking options:
  • https://www.mathnet.ru/eng/aa1529
  • https://www.mathnet.ru/eng/aa/v29/i1/p237
  • This publication is cited in the following 11 articles:
    1. Klas Modin, Stephen C Preston, “Zeitlin's model for axisymmetric 3D Euler equations”, Nonlinearity, 38:2 (2025), 025008  crossref
    2. Klas Modin, Manolis Perrot, “Eulerian and Lagrangian Stability in Zeitlin's Model of Hydrodynamics”, Commun. Math. Phys., 405:8 (2024)  crossref
    3. Tommaso Aschieri, Błażej Ruba, Jan Philip Solovej, “SU(2)-Equivariant Quantum Channels: Semiclassical Analysis”, Commun. Math. Phys., 405:12 (2024)  crossref
    4. O. Shabtai, “On polynomials in spectral projections of spin operators”, Lett. Math. Phys., 111:5 (2021), 119  crossref  mathscinet  zmath  isi  scopus
    5. L. Ioos, D. Kazhdan, L. Polterovich, “Berezin-Toeplitz quantization and the least unsharpness principle”, Int. Math. Res. Notices, 2021:6 (2021), 4625–4656  crossref  mathscinet  zmath  isi
    6. O. Shabtai, “Commutators of spectral projections of spin operators”, J. Lie Theory, 31:3 (2021), 599–624  mathscinet  zmath  isi
    7. Louis Ioos, Victoria Kaminker, Leonid Polterovich, Dor Shmoish, “Spectral aspects of the Berezin transform”, Annales Henri Lebesgue, 3 (2020), 1343  crossref
    8. A. Deleporte, “Low-energy spectrum of toeplitz operators: the case of wells”, J. Spectr. Theory, 9:1 (2019), 79–125  crossref  mathscinet  zmath  isi  scopus
    9. L. Charles, L. Polterovich, “Quantum speed limit versus classical displacement energy”, Ann. Henri Poincare, 19:4 (2018), 1215–1257  crossref  mathscinet  zmath  isi  scopus
    10. Y. Le Floch, “Bounds for fidelity of semiclassical Lagrangian states in Kahler quantization”, J. Math. Phys., 59:8 (2018), 082103  crossref  mathscinet  zmath  isi  scopus
    11. T. Barron, Toeplitz operators on Kähler manifolds: examples, SpringerBriefs in Mathematics, Springer, Cham, 2018, 84 pp.  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :104
    References:50
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025