Abstract:
Sharp remainder bounds are proved for the Berezin–Toeplitz quantization and applications to semiclassical quantum measurements are presented.
Citation:
L. Charles, L. Polterovich, “Sharp correspondence principle and quantum measurements”, Algebra i Analiz, 29:1 (2017), 237–278; St. Petersburg Math. J., 29:1 (2018), 177–207
This publication is cited in the following 11 articles:
Klas Modin, Stephen C Preston, “Zeitlin's model for axisymmetric 3D Euler equations”, Nonlinearity, 38:2 (2025), 025008
Klas Modin, Manolis Perrot, “Eulerian and Lagrangian Stability in Zeitlin's Model of Hydrodynamics”, Commun. Math. Phys., 405:8 (2024)
Tommaso Aschieri, Błażej Ruba, Jan Philip Solovej, “SU(2)-Equivariant Quantum Channels: Semiclassical Analysis”, Commun. Math. Phys., 405:12 (2024)
O. Shabtai, “On polynomials in spectral projections of spin operators”, Lett. Math. Phys., 111:5 (2021), 119
L. Ioos, D. Kazhdan, L. Polterovich, “Berezin-Toeplitz quantization and the least unsharpness principle”, Int. Math. Res. Notices, 2021:6 (2021), 4625–4656
O. Shabtai, “Commutators of spectral projections of spin operators”, J. Lie Theory, 31:3 (2021), 599–624
Louis Ioos, Victoria Kaminker, Leonid Polterovich, Dor Shmoish, “Spectral aspects of the Berezin transform”, Annales Henri Lebesgue, 3 (2020), 1343
A. Deleporte, “Low-energy spectrum of toeplitz operators: the case of wells”, J. Spectr. Theory, 9:1 (2019), 79–125
L. Charles, L. Polterovich, “Quantum speed limit versus classical displacement energy”, Ann. Henri Poincare, 19:4 (2018), 1215–1257
Y. Le Floch, “Bounds for fidelity of semiclassical Lagrangian states in Kahler quantization”, J. Math. Phys., 59:8 (2018), 082103
T. Barron, Toeplitz operators on Kähler manifolds: examples, SpringerBriefs in Mathematics, Springer, Cham, 2018, 84 pp.