Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2017, Volume 29, Issue 1, Pages 145–188 (Mi aa1525)  

This article is cited in 4 scientific papers (total in 4 papers)

Research Papers

Affine hemispheres of elliptic type

B. Klartagab

a Department of Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
b School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
Full-text PDF (377 kB) Citations (4)
References:
Abstract: We find that for any $n$-dimensional, compact, convex set $K\subseteq\mathbb R^{n+1}$ there is an affinely-spherical hypersurface $M\subseteq\mathbb R^{n+1}$ with center in the relative interior of $K$ such that the disjoint union $M\cup K$ is the boundary of an $(n+1)$-dimensional, compact, convex set. This so-called affine hemisphere $M$ is uniquely determined by $K$ up to affine transformations, it is of elliptic type, is associated with $K$ in an affinely-invariant manner, and it is centered at the Santaló point of $K$.
Keywords: affine sphere, cone measure, anchor, Santaló point, obverse.
Funding agency Grant number
European Research Council
Supported by a grant from the European Research Council.
Received: 13.12.2015
English version:
St. Petersburg Mathematical Journal, 2018, Volume 29, Issue 1, Pages 107–138
DOI: https://doi.org/10.1090/spmj/1484
Bibliographic databases:
Document Type: Article
Language: English
Citation: B. Klartag, “Affine hemispheres of elliptic type”, Algebra i Analiz, 29:1 (2017), 145–188; St. Petersburg Math. J., 29:1 (2018), 107–138
Citation in format AMSBIB
\Bibitem{Kla17}
\by B.~Klartag
\paper Affine hemispheres of elliptic type
\jour Algebra i Analiz
\yr 2017
\vol 29
\issue 1
\pages 145--188
\mathnet{http://mi.mathnet.ru/aa1525}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3660687}
\elib{https://elibrary.ru/item.asp?id=28960974}
\transl
\jour St. Petersburg Math. J.
\yr 2018
\vol 29
\issue 1
\pages 107--138
\crossref{https://doi.org/10.1090/spmj/1484}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000419174700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040031847}
Linking options:
  • https://www.mathnet.ru/eng/aa1525
  • https://www.mathnet.ru/eng/aa/v29/i1/p145
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:318
    Full-text PDF :59
    References:42
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024