Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2016, Volume 28, Issue 4, Pages 47–61 (Mi aa1501)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Subring subgroups of symplectic groups in characteristic 2

A. Baka, A. Stepanovbc

a Bielefeld University, Postfach 100131, 33501, Bielefeld, Germany
b St. Petersburg Electrotechnical University, Russia
c St. Petersburg State University, Faculty of Mathematics and Mechanics, 198504, St. Petersburg, Petrodvorets, Universitetskiĭ pr., 28, Russia
Full-text PDF (238 kB) Citations (3)
References:
Abstract: In 2012, the second author obtained a description of the lattice of subgroups of a Chevalley group $G(\Phi,A)$ that contain the elementary subgroup $E(\Phi,K)$ over a subring $K\subseteq A$ provided $\Phi=B_n$, $C_n$, or $F_4$, $n\ge2$, and $2$ is invertible in $K$. It turned out that this lattice is a disjoint union of “sandwiches” parametrized by the subrings $R$ such that $K\subseteq R\subseteq A$. In the present paper, a similar result is proved in the case where $\Phi=C_n$, $n\ge3$, and $2=0$ in $K$. In this setting, more sandwiches are needed, namely those parametrized by the form rings $(R,\Lambda)$ such that $K\subseteq\Lambda\subseteq R\subseteq A$. The result generalizes Ya. N. Nuzhin's theorem of 2013 concerning the root systems $\Phi=B_n$, $C_n$, $n\ge3$, where the same description of the subgroup lattice is obtained, but under the condition that $A$ and $K$ are fields such that $A$ is algebraic over $K$.
Keywords: symplectic group, commutative ring, subgroup lattice, Bak unitary group, group identity with constants, small unipotent element, nilpotent structure of $K1$.
Funding agency Grant number
Russian Science Foundation 14-11-00297
The second author was supported by Russian Science Foundation, grant no. 14-11-00297.
Received: 01.02.2016
English version:
St. Petersburg Mathematical Journal, 2017, Volume 28, Issue 4, Pages 465–475
DOI: https://doi.org/10.1090/spmj/1459
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Bak, A. Stepanov, “Subring subgroups of symplectic groups in characteristic 2”, Algebra i Analiz, 28:4 (2016), 47–61; St. Petersburg Math. J., 28:4 (2017), 465–475
Citation in format AMSBIB
\Bibitem{BakSte16}
\by A.~Bak, A.~Stepanov
\paper Subring subgroups of symplectic groups in characteristic~2
\jour Algebra i Analiz
\yr 2016
\vol 28
\issue 4
\pages 47--61
\mathnet{http://mi.mathnet.ru/aa1501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3604296}
\elib{https://elibrary.ru/item.asp?id=26414194}
\transl
\jour St. Petersburg Math. J.
\yr 2017
\vol 28
\issue 4
\pages 465--475
\crossref{https://doi.org/10.1090/spmj/1459}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401547000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019723606}
Linking options:
  • https://www.mathnet.ru/eng/aa1501
  • https://www.mathnet.ru/eng/aa/v28/i4/p47
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :31
    References:39
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024