|
This article is cited in 3 scientific papers (total in 3 papers)
Research Papers
Subring subgroups of symplectic groups in characteristic 2
A. Baka, A. Stepanovbc a Bielefeld University, Postfach 100131, 33501, Bielefeld, Germany
b St. Petersburg Electrotechnical University, Russia
c St. Petersburg State University, Faculty of Mathematics and Mechanics, 198504, St. Petersburg, Petrodvorets, Universitetskiĭ pr., 28, Russia
Abstract:
In 2012, the second author obtained a description of the lattice of subgroups of a Chevalley group $G(\Phi,A)$ that contain the elementary subgroup $E(\Phi,K)$ over a subring $K\subseteq A$ provided $\Phi=B_n$, $C_n$, or $F_4$, $n\ge2$, and $2$ is invertible in $K$. It turned out that this lattice is a disjoint union of “sandwiches” parametrized by the subrings $R$ such that $K\subseteq R\subseteq A$. In the present paper, a similar result is proved in the case where $\Phi=C_n$, $n\ge3$, and $2=0$ in $K$. In this setting, more sandwiches are needed, namely those parametrized by the form rings $(R,\Lambda)$ such that $K\subseteq\Lambda\subseteq R\subseteq A$. The result generalizes Ya. N. Nuzhin's theorem of 2013 concerning the root systems $\Phi=B_n$, $C_n$, $n\ge3$, where the same description of the subgroup lattice is obtained, but under the condition that $A$ and $K$ are fields such that $A$ is algebraic over $K$.
Keywords:
symplectic group, commutative ring, subgroup lattice, Bak unitary group, group identity with constants, small unipotent element, nilpotent structure of $K1$.
Received: 01.02.2016
Citation:
A. Bak, A. Stepanov, “Subring subgroups of symplectic groups in characteristic 2”, Algebra i Analiz, 28:4 (2016), 47–61; St. Petersburg Math. J., 28:4 (2017), 465–475
Linking options:
https://www.mathnet.ru/eng/aa1501 https://www.mathnet.ru/eng/aa/v28/i4/p47
|
Statistics & downloads: |
Abstract page: | 275 | Full-text PDF : | 31 | References: | 39 | First page: | 13 |
|