Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2016, Volume 28, Issue 2, Pages 34–57 (Mi aa1484)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign

C. Bandlea, A. Wagnerb

a Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland
b Institut für Mathematik, RWTH Aachen, Templergraben 55, D-52062 Aachen, Germany
Full-text PDF (299 kB) Citations (2)
References:
Abstract: The energy of the torsion problem with Robin boundary conditions is considered in the case where the solution is not a minimizer. Its dependence on the volume of the domain and the surface area of the boundary is discussed. In contrast to the case of positive elasticity constants, the ball does not provide a minimum. For nearly spherical domains and elasticity constants close to zero the energy is the largest for the ball. This result is true for general domains in the plane under an additional condition on the first nontrivial Steklov eigenvalue. For more negative elasticity constants the situation is more involved and is strongly related to the particular domain perturbation. The methods used in this paper are the series representation of the solution in terms of Steklov eigenfunctions, the first and second shape derivatives and an isoperimetric inequality of Payne and Weinberger for the torsional rigidity.
Keywords: Robin boundary condition, energy representation, Steklov eigenfunction, extremal domain, first and second domain variation, optimality conditions.
Received: 30.11.2015
English version:
St. Petersburg Mathematical Journal, 2017, Volume 28, Issue 2, Pages 153–170
DOI: https://doi.org/10.1090/spmj/1443
Bibliographic databases:
Document Type: Article
Language: English
Citation: C. Bandle, A. Wagner, “Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign”, Algebra i Analiz, 28:2 (2016), 34–57; St. Petersburg Math. J., 28:2 (2017), 153–170
Citation in format AMSBIB
\Bibitem{BanWag16}
\by C.~Bandle, A.~Wagner
\paper Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign
\jour Algebra i Analiz
\yr 2016
\vol 28
\issue 2
\pages 34--57
\mathnet{http://mi.mathnet.ru/aa1484}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3593002}
\elib{https://elibrary.ru/item.asp?id=26414176}
\transl
\jour St. Petersburg Math. J.
\yr 2017
\vol 28
\issue 2
\pages 153--170
\crossref{https://doi.org/10.1090/spmj/1443}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000395756900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013466573}
Linking options:
  • https://www.mathnet.ru/eng/aa1484
  • https://www.mathnet.ru/eng/aa/v28/i2/p34
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :74
    References:48
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024