Abstract:
In order to accommodate general initial data, an appropriately relaxed notion of renormalized Lagrangian solutions for the Semi-Geostrophic Shallow Water system in physical space is introduced. This is shown to be consistent with previous notions, generalizing them. A weak stability result is obtained first, followed by a general existence result whose proof employs the said stability and approximating solutions with regular initial data. The renormalization property ensures the return from physical to dual space and ultimately enables us to achieve the desired results.
Keywords:
Semi-Geostrophic Shallow Water system, flows of maps, optimal mass transport, Wasserstein metric, optimal maps, absolutely continuous curves.
Citation:
M. Feldman, A. Tudorascu, “Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data”, Algebra i Analiz, 27:3 (2015), 272–300; St. Petersburg Math. J., 27:3 (2016), 547–568
\Bibitem{FelTud15}
\by M.~Feldman, A.~Tudorascu
\paper Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 3
\pages 272--300
\mathnet{http://mi.mathnet.ru/aa1444}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3570966}
\elib{https://elibrary.ru/item.asp?id=24849900}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 3
\pages 547--568
\crossref{https://doi.org/10.1090/spmj/1403}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373930300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963502529}
Linking options:
https://www.mathnet.ru/eng/aa1444
https://www.mathnet.ru/eng/aa/v27/i3/p272
This publication is cited in the following 2 articles:
Jingrui Cheng, Michael Cullen, Mikhail Feldman, “Classical Solutions to Semi-geostrophic System with Variable Coriolis Parameter”, Arch Rational Mech Anal, 227:1 (2018), 215
Cheng J., “Semigeostrophic equations in physical space with free upper boundary”, Calc. Var. Partial Differ. Equ., 55:6 (2016)