Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2015, Volume 27, Issue 3, Pages 183–201 (Mi aa1440)  

Research Papers

Contact of a thin free boundary with a fixed one in the Signorini problem

N. Matevosyana, A. Petrosyanb

a Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA
b Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
References:
Abstract: The Signorini problem is studied near a fixed boundary where the solution is “clamped down” or “glued”. It is shown that, in general, the solutions are at least $C^{1/2}$ regular and that this regularity is sharp. Near the actual points of contact of the free boundary with the fixed one, the blowup solutions are shown to have homogeneity $\kappa\geq3/2$, while at the noncontact points the homogeneity must take one of the values: $1/2,3/2,\dots,m-1/2,\ldots$
Keywords: Signorini problem, thin obstacle problem, thin free boundary, optimal regularity, contact with fixed boundary, Almgren's frequency formula.
Received: 12.01.2015
English version:
St. Petersburg Mathematical Journal, 2016, Volume 27, Issue 3, Pages 481–494
DOI: https://doi.org/10.1090/spmj/1399
Bibliographic databases:
Document Type: Article
Language: English
Citation: N. Matevosyan, A. Petrosyan, “Contact of a thin free boundary with a fixed one in the Signorini problem”, Algebra i Analiz, 27:3 (2015), 183–201; St. Petersburg Math. J., 27:3 (2016), 481–494
Citation in format AMSBIB
\Bibitem{MatPet15}
\by N.~Matevosyan, A.~Petrosyan
\paper Contact of a~thin free boundary with a~fixed one in the Signorini problem
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 3
\pages 183--201
\mathnet{http://mi.mathnet.ru/aa1440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3570962}
\elib{https://elibrary.ru/item.asp?id=24849896}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 3
\pages 481--494
\crossref{https://doi.org/10.1090/spmj/1399}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373930300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963579882}
Linking options:
  • https://www.mathnet.ru/eng/aa1440
  • https://www.mathnet.ru/eng/aa/v27/i3/p183
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024