Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2015, Volume 27, Issue 3, Pages 75–94 (Mi aa1436)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

The proof of the nonhomogeneous $T1$ theorem via averaging of dyadic shifts

A. Volberg

Department of Mathematics, Michigan State University, East Lansing, USA
Full-text PDF (274 kB) Citations (2)
References:
Abstract: Once again, a proof of the nonhomogeneous $T1$ theorem is given. This proof consists of three main parts: a construction of a random “dyadic” lattice as in [7,8]; an estimate of matrix coefficients of a Calderón–Zygmund operator with respect to random Haar basis if a smaller Haar support is good like in [8]; a clever averaging trick from [2,5], which involves the averaging over dyadic lattices to decompose an operator into dyadic shifts eliminating the error term that was present in the random geometric construction of [7,8]. Hence, a decomposition is established of nonhomogeneous Calderón–Zygmund operators into dyadic Haar shifts.
Keywords: operators, dyadic shift, $T1$ theorem, nondoubling measure.
Received: 20.11.2014
English version:
St. Petersburg Mathematical Journal, 2016, Volume 27, Issue 3, Pages 399–413
DOI: https://doi.org/10.1090/spmj/1395
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Volberg, “The proof of the nonhomogeneous $T1$ theorem via averaging of dyadic shifts”, Algebra i Analiz, 27:3 (2015), 75–94; St. Petersburg Math. J., 27:3 (2016), 399–413
Citation in format AMSBIB
\Bibitem{Vol15}
\by A.~Volberg
\paper The proof of the nonhomogeneous $T1$ theorem via averaging of dyadic shifts
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 3
\pages 75--94
\mathnet{http://mi.mathnet.ru/aa1436}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3570958}
\elib{https://elibrary.ru/item.asp?id=24849891}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 3
\pages 399--413
\crossref{https://doi.org/10.1090/spmj/1395}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373930300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963512948}
Linking options:
  • https://www.mathnet.ru/eng/aa1436
  • https://www.mathnet.ru/eng/aa/v27/i3/p75
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024