Abstract:
A modification of the total variation image inpainting method is investigated. By using DeGiorgi type arguments, the partial regularity results established previously are improved to C1,α interior differentiability of solutions of this new variational problem.
Citation:
M. Bildhauer, M. Fuchs, C. Tietz, “C1,α-interior regularity for minimizers of a class of variational problems with linear growth related to image inpainting”, Algebra i Analiz, 27:3 (2015), 51–65; St. Petersburg Math. J., 27:3 (2016), 381–392
\Bibitem{BilFucTie15}
\by M.~Bildhauer, M.~Fuchs, C.~Tietz
\paper $C^{1,\alpha}$-interior regularity for minimizers of a~class of variational problems with linear growth related to image inpainting
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 3
\pages 51--65
\mathnet{http://mi.mathnet.ru/aa1434}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3570956}
\elib{https://elibrary.ru/item.asp?id=24849889}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 3
\pages 381--392
\crossref{https://doi.org/10.1090/spmj/1393}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373930300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963529475}
Linking options:
https://www.mathnet.ru/eng/aa1434
https://www.mathnet.ru/eng/aa/v27/i3/p51
This publication is cited in the following 7 articles:
M. Fuchs, J. Weickert, “Iterative TV-Regularization of Grey-Scale Images”, J Math Sci, 242:2 (2019), 323
M. Bildhauer, M. Fuchs, J. Mueller, X. Zhong, “On the local boundedness of generalized minimizers of variational problems with linear growth”, Ann. Mat. Pura Appl., 197:4 (2018), 1117–1129
M. Fuchs, J. Mueller, Ch. Tietz, J. Weickert, “Convex regularization of multi-channel images based on variants of the TV-model”, Complex Var. Elliptic Equ., 63:7–8, SI (2018), 976–995
M. Fuchs, J. Müller, “A Remark on Denoising of Greyscale Images Using Energy Densities with Varying Growth Rates”, J Math Sci, 228:6 (2018), 705
St. Petersburg Math. J., 29:4 (2018), 657–681
J. Math. Sci. (N. Y.), 224:3 (2017), 414–441
M. Bildhauer, M. Fuchs, J. Weickert, “Denoising and Inpainting of Images Using Tv-Type Energies: Theoretical and Computational Aspects”, J Math Sci, 219:6 (2016), 899