Processing math: 100%
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2015, Volume 27, Issue 3, Pages 51–65 (Mi aa1434)  

This article is cited in 7 scientific papers (total in 7 papers)

Research Papers

C1,α-interior regularity for minimizers of a class of variational problems with linear growth related to image inpainting

M. Bildhauer, M. Fuchs, C. Tietz

Department of Mathematics, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
Full-text PDF (237 kB) Citations (7)
References:
Abstract: A modification of the total variation image inpainting method is investigated. By using DeGiorgi type arguments, the partial regularity results established previously are improved to C1,α interior differentiability of solutions of this new variational problem.
Keywords: image inpainting, variational method, TV-regularization.
Received: 20.11.2014
English version:
St. Petersburg Mathematical Journal, 2016, Volume 27, Issue 3, Pages 381–392
DOI: https://doi.org/10.1090/spmj/1393
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. Bildhauer, M. Fuchs, C. Tietz, “C1,α-interior regularity for minimizers of a class of variational problems with linear growth related to image inpainting”, Algebra i Analiz, 27:3 (2015), 51–65; St. Petersburg Math. J., 27:3 (2016), 381–392
Citation in format AMSBIB
\Bibitem{BilFucTie15}
\by M.~Bildhauer, M.~Fuchs, C.~Tietz
\paper $C^{1,\alpha}$-interior regularity for minimizers of a~class of variational problems with linear growth related to image inpainting
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 3
\pages 51--65
\mathnet{http://mi.mathnet.ru/aa1434}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3570956}
\elib{https://elibrary.ru/item.asp?id=24849889}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 3
\pages 381--392
\crossref{https://doi.org/10.1090/spmj/1393}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373930300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963529475}
Linking options:
  • https://www.mathnet.ru/eng/aa1434
  • https://www.mathnet.ru/eng/aa/v27/i3/p51
  • This publication is cited in the following 7 articles:
    1. M. Fuchs, J. Weickert, “Iterative TV-Regularization of Grey-Scale Images”, J Math Sci, 242:2 (2019), 323  crossref
    2. M. Bildhauer, M. Fuchs, J. Mueller, X. Zhong, “On the local boundedness of generalized minimizers of variational problems with linear growth”, Ann. Mat. Pura Appl., 197:4 (2018), 1117–1129  crossref  mathscinet  zmath  isi  scopus
    3. M. Fuchs, J. Mueller, Ch. Tietz, J. Weickert, “Convex regularization of multi-channel images based on variants of the TV-model”, Complex Var. Elliptic Equ., 63:7–8, SI (2018), 976–995  crossref  mathscinet  zmath  isi  scopus
    4. M. Fuchs, J. Müller, “A Remark on Denoising of Greyscale Images Using Energy Densities with Varying Growth Rates”, J Math Sci, 228:6 (2018), 705  crossref
    5. St. Petersburg Math. J., 29:4 (2018), 657–681  mathnet  crossref  mathscinet  isi  elib
    6. J. Math. Sci. (N. Y.), 224:3 (2017), 414–441  mathnet  crossref  mathscinet
    7. M. Bildhauer, M. Fuchs, J. Weickert, “Denoising and Inpainting of Images Using Tv-Type Energies: Theoretical and Computational Aspects”, J Math Sci, 219:6 (2016), 899  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:364
    Full-text PDF :84
    References:52
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025