Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2015, Volume 27, Issue 2, Pages 218–231 (Mi aa1431)  

This article is cited in 9 scientific papers (total in 9 papers)

Easy Reading for a Professional

Bellman vs Beurling: sharp estimates of uniform convexity for LpLp spaces

P. B. Zatitskiyab, P. Ivanishvilic, D. M. Stolyarovba

a Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
c Michigan State University, USA
Full-text PDF (308 kB) Citations (9)
References:
Received: 21.09.2014
English version:
St. Petersburg Mathematical Journal, 2016, Volume 27, Issue 2, Pages 333–343
DOI: https://doi.org/10.1090/spmj/1390
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. B. Zatitskiy, P. Ivanishvili, D. M. Stolyarov, “Bellman vs Beurling: sharp estimates of uniform convexity for LpLp spaces”, Algebra i Analiz, 27:2 (2015), 218–231; St. Petersburg Math. J., 27:2 (2016), 333–343
Citation in format AMSBIB
\Bibitem{ZatIvaSto15}
\by P.~B.~Zatitskiy, P.~Ivanishvili, D.~M.~Stolyarov
\paper Bellman vs Beurling: sharp estimates of uniform convexity for $L^p$ spaces
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 2
\pages 218--231
\mathnet{http://mi.mathnet.ru/aa1431}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3444467}
\elib{https://elibrary.ru/item.asp?id=24849884}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 2
\pages 333--343
\crossref{https://doi.org/10.1090/spmj/1390}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000374002600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958245415}
Linking options:
  • https://www.mathnet.ru/eng/aa1431
  • https://www.mathnet.ru/eng/aa/v27/i2/p218
  • This publication is cited in the following 9 articles:
    1. Vasily Vasyunin, Alexander Volberg, The Bellman Function Technique in Harmonic Analysis, 2020  crossref
    2. A. Osekowski, “A sharp estimate for muckenhoupt class a infinity and bmo”, Positivity, 23:3 (2019), 711–725  crossref  mathscinet  isi
    3. E. N. Nikolidakis, “Extremal sequences for the bellman function of three variables of the dyadic maximal operator related to Kolmogorov's inequality”, Trans. Am. Math. Soc., 372:9 (2019), 6315–6342  crossref  mathscinet  zmath  isi  scopus
    4. H. Hedenmalm, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Sharpening Hölder's inequality”, J. Funct. Anal., 275:5 (2018), 1280–1319  crossref  mathscinet  zmath  isi  scopus
    5. P. Ivanisvili, D. M. Stolyarov, V. Vasyunin, P. B. Zatitskiy, Bellman function for extremal problems in BMO II: evolution, Mem. Am. Math. Soc., 255, no. 1220, 2018, v+133 pp.  mathscinet  isi
    6. A. D. Melas, E. N. Nikolidakis, “Sharp Lorentz estimates for dyadic-like maximal operators and related Bellman functions”, J. Geom. Anal., 27:4 (2017), 2644–2657  crossref  mathscinet  zmath  isi  scopus
    7. A. D. Melas, E. N. Nikolidakis, D. Cheliotis, “Estimates for Bellman functions related to dyadic-like maximal operators on weighted spaces”, Studia Math., 239:1 (2017), 1–16  crossref  mathscinet  zmath  isi  scopus
    8. D. M. Stolyarov, P. B. Zatitskiy, “Theory of locally concave functions and its applications to sharp estimates of integral functionals”, Adv. Math., 291 (2016), 228–273  crossref  mathscinet  zmath  isi  elib  scopus
    9. P. Ivanisvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Sharp estimates of integral functionals on classes of functions with small mean oscillation”, C. R. Math., 353:12 (2015), 1081–1085  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:523
    Full-text PDF :151
    References:57
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025