Abstract:
Let f be a holomorphic Hecke eigencuspform of even weight k⩾12 for SL(2,Z) and let L(s,sym2f) be the symmetric square L-function of f. Let C(x) be the summatory function of the coefficients of L(s,sym2f). The true order is found for
∫x0C(y)2dy.
Citation:
O. M. Fomenko, “Mean value theorems for automorphic L-functions”, Algebra i Analiz, 19:5 (2007), 246–264; St. Petersburg Math. J., 19:5 (2008), 853–866
\Bibitem{Fom07}
\by O.~M.~Fomenko
\paper Mean value theorems for automorphic $L$-functions
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 5
\pages 246--264
\mathnet{http://mi.mathnet.ru/aa143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2381948}
\zmath{https://zbmath.org/?q=an:1206.11061}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 5
\pages 853--866
\crossref{https://doi.org/10.1090/S1061-0022-08-01024-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267421000010}
Linking options:
https://www.mathnet.ru/eng/aa143
https://www.mathnet.ru/eng/aa/v19/i5/p246
This publication is cited in the following 14 articles:
Huafeng Liu, Xiaojie Yang, “The Average Behaviors of the Fourier Coefficients of j-th Symmetric Power L-Function over Two Sparse Sequences of Positive Integers”, Bull. Iran. Math. Soc., 50:1 (2024)
Weili Yao, “Fourier coefficients of cusp forms on special sequences”, Int. J. Number Theory, 20:04 (2024), 1125
Huafeng Liu, “The Average Behavior of Fourier Coefficients of Symmetric Power L-Functions”, Bull. Malays. Math. Sci. Soc., 46:6 (2023)
Guodong Hua, Bin Chen, Lijing Pan, Xiaofang Chen, “On higher moments of Dirichlet coefficients attached to symmetric square L-functions over certain sparse sequence”, Rend. Circ. Mat. Palermo, II. Ser, 72:8 (2023), 4195
Guodong Hua, “The average behaviour of a hybrid arithmetic function associated to cusp form coefficients over certain sparse sequence”, Filomat, 37:23 (2023), 7791
Guodong Hua, “Discrete mean square of the coefficients of triple product L-functions over certain sparse sequence”, Bulletin des Sciences Mathématiques, 180 (2022), 103194
Guodong Hua, “The average behaviour of Hecke eigenvalues over certain sparse sequence of positive integers”, Res. number theory, 8:4 (2022)
Luo Sh., Lao H., Zou A., “Asymptotics For the Dirichlet Coefficients of Symmetric Power l-Functions”, Acta Arith., 199:3 (2021), 253–268
He X., “Integral Power Sums of Fourier Coefficients of Symmetric Square l-Functions”, Proc. Amer. Math. Soc., 147:7 (2019), 2847–2856
O. M. Fomenko, “On the mean square of the error term for Dedekind zeta functions”, J. Math. Sci. (N. Y.), 217:1 (2016), 125–137
Lao H., “On the fourth moment of coefficients of symmetric square L-function”, Chin. Ann. Math. Ser. B, 33:6 (2012), 877–888
O. M. Fomenko, “On summatory functions for automorphic $L$-functions”, J. Math. Sci. (N. Y.), 184:6 (2012), 776–785
Lao Huixue, “Mean square estimates for coefficients of symmetric power $L$-functions”, Acta Appl. Math., 110:3 (2010), 1127–1136
O. M. Fomenko, “Mean value theorems for a class of Dirichlet series”, J. Math. Sci. (N. Y.), 157:4 (2009), 659–673