|
This article is cited in 14 scientific papers (total in 14 papers)
Research Papers
Mean value theorems for automorphic $L$-functions
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $f$ be a holomorphic Hecke eigencuspform of even weight $k\ge 12$ for $\mathrm{SL}(2, \mathbb{Z})$ and let $L(s,\mathrm{sym}^2f)$ be the symmetric square $L$-function of $f$. Let $C(x)$ be the summatory function of the coefficients of $L(s,\mathrm{sym}^2 f)$. The true order is found for
$$
\int_0^x C(y)^2\,dy.
$$
Keywords:
Symmetric square $L$-function, summatory function, Euler product, Voronoi formula, mean value.
Received: 05.04.2007
Citation:
O. M. Fomenko, “Mean value theorems for automorphic $L$-functions”, Algebra i Analiz, 19:5 (2007), 246–264; St. Petersburg Math. J., 19:5 (2008), 853–866
Linking options:
https://www.mathnet.ru/eng/aa143 https://www.mathnet.ru/eng/aa/v19/i5/p246
|
Statistics & downloads: |
Abstract page: | 451 | Full-text PDF : | 99 | References: | 58 | First page: | 7 |
|