Abstract:
A simple yet complete construction of the inverse problem for the Schrödinger operator on the half-line is presented in terms of the Riemann–Hilbert approach.
Citation:
R. Shterenberg, V. Sukhanov, “Riemann–Hilbert approach to the inverse problem for the Schrödinger operator on the half-line”, Algebra i Analiz, 26:6 (2014), 198–215; St. Petersburg Math. J., 26:6 (2015), 1005–1017
\Bibitem{ShtSuk14}
\by R.~Shterenberg, V.~Sukhanov
\paper Riemann--Hilbert approach to the inverse problem for the Schr\"odinger operator on the half-line
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 6
\pages 198--215
\mathnet{http://mi.mathnet.ru/aa1413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3443261}
\elib{https://elibrary.ru/item.asp?id=22834115}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 6
\pages 1005--1017
\crossref{https://doi.org/10.1090/spmj/1372}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369702700010}
\elib{https://elibrary.ru/item.asp?id=24961538}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944321109}
Linking options:
https://www.mathnet.ru/eng/aa1413
https://www.mathnet.ru/eng/aa/v26/i6/p198
This publication is cited in the following 2 articles:
V. V. Sukhanov, “Zadacha Rimana–Gilberta dlya odnomernogo operatora Shredingera s potentsialom v vide summy paraboly i finitnogo potentsiala”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 240–258
Its A., Sukhanov V., “A Riemann–Hilbert approach to the inverse problem for the Stark operator on the line”, Inverse Probl., 32:5 (2016), 055003