Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2014, Volume 26, Issue 6, Pages 69–77 (Mi aa1407)  

Research Papers

Algebraic properties of bi-polymatroidal ideals

M. La Barbiera

University of Messina, Department of Mathematics and Informatics, Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
References:
Abstract: Classes of monomial ideals are considered in the polynomial ring in two sets of variables $R=K[X_1,\dots,X_n;Y_1,\dots,Y_m]$. Some algebraic properties of bi-polymatroidal ideals of $R$ are studied. More precisely, the behavior of the monomial localization of such ideals is investigated.
Keywords: bi-polymatroidal ideals, monomial localization.
Received: 05.09.2013
English version:
St. Petersburg Mathematical Journal, 2015, Volume 26, Issue 6, Pages 911–917
DOI: https://doi.org/10.1090/spmj/1366
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. La Barbiera, “Algebraic properties of bi-polymatroidal ideals”, Algebra i Analiz, 26:6 (2014), 69–77; St. Petersburg Math. J., 26:6 (2015), 911–917
Citation in format AMSBIB
\Bibitem{La 14}
\by M.~La Barbiera
\paper Algebraic properties of bi-polymatroidal ideals
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 6
\pages 69--77
\mathnet{http://mi.mathnet.ru/aa1407}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3443256}
\elib{https://elibrary.ru/item.asp?id=22834109}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 6
\pages 911--917
\crossref{https://doi.org/10.1090/spmj/1366}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369702700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944317804}
Linking options:
  • https://www.mathnet.ru/eng/aa1407
  • https://www.mathnet.ru/eng/aa/v26/i6/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :81
    References:29
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024