Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 5, Pages 159–178 (Mi aa140)  

This article is cited in 25 scientific papers (total in 25 papers)

Research Papers

Rational surfaces and the canonical dimension of PGL6PGL6

J.-L. Colliot-Thélènea, N. A. Karpenkob, A. S. Merkur'evc

a CNRS, Mathématiques, Université Paris-Sud, Orsay, France
b Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie – Paris 6
c Department of Mathematics, University of California, Los Angeles, CA, USA
References:
Abstract: By definition, the “canonical dimension” of an algebraic group over a field is the maximum of the canonical dimensions of the principal homogeneous spaces under that group. Over a field of characteristic zero, it is proved that the canonical dimension of the projective linear group PGL6 is 3. We give two different proofs, both of which lean upon the birational classification of rational surfaces over a nonclosed field. One of the proofs involves taking a novel look at del Pezzo surfaces of degree 6.
Keywords: Algebraic group, projective linear group, rational surfaces, birational classification, canonical dimension.
Received: 29.01.2007
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 5, Pages 793–804
DOI: https://doi.org/10.1090/S1061-0022-08-01021-2
Bibliographic databases:
Document Type: Article
MSC: 14L10, 14L15
Language: Russian
Citation: J.-L. Colliot-Thélène, N. A. Karpenko, A. S. Merkur'ev, “Rational surfaces and the canonical dimension of PGL6”, Algebra i Analiz, 19:5 (2007), 159–178; St. Petersburg Math. J., 19:5 (2008), 793–804
Citation in format AMSBIB
\Bibitem{ColKarMer07}
\by J.-L.~Colliot-Th\'el\`ene, N.~A.~Karpenko, A.~S.~Merkur'ev
\paper Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 5
\pages 159--178
\mathnet{http://mi.mathnet.ru/aa140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2381945}
\zmath{https://zbmath.org/?q=an:1206.14070}
\elib{https://elibrary.ru/item.asp?id=9577318}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 5
\pages 793--804
\crossref{https://doi.org/10.1090/S1061-0022-08-01021-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267421000007}
Linking options:
  • https://www.mathnet.ru/eng/aa140
  • https://www.mathnet.ru/eng/aa/v19/i5/p159
  • This publication is cited in the following 25 articles:
    1. Akinari Hoshi, Hidetaka Kitayama, “Rationality Problem of Two-Dimensional Quasi-Monomial Group Actions”, Transformation Groups, 2024  crossref
    2. Jérémy Blanc, Ivan Cheltsov, Alexander Duncan, Yuri Prokhorov, “Finite quasisimple groups acting on rationally connected threefolds”, Math. Proc. Camb. Philos. Soc., 174:3 (2023), 531–568  mathnet  crossref
    3. Andrey Trepalin, “Birational classification of pointless del Pezzo surfaces of degree 8”, Eur. J. Math., 9 (2023), 9  mathnet  crossref
    4. Kirill Zainoulline, “The Canonical Dimension of a Semisimple Group and the Unimodular Degree of a Root System”, International Mathematics Research Notices, 2023:4 (2023), 2834  crossref
    5. Kresch A., Tschinkel Yu., “Brauer Groups of Involution Surface Bundles”, Pure Appl. Math. Q., 17:2, SI (2021), 649–669  crossref  mathscinet  isi
    6. Berg J., Varilly-Alvarado A., “Odd Order Obstructions to the Hasse Principle on General K3 Surfaces”, Math. Comput., 89:323 (2020), 1395–1416  crossref  mathscinet  isi
    7. Scavia F., “Essential Dimension and Genericity For Quiver Representations”, Doc. Math., 25 (2020), 329–364  mathscinet  isi
    8. A. Kresch, Yu. Tschinkel, “Models of Triple Covers”, Math. Notes, 105:5 (2019), 795–797  mathnet  crossref  crossref  mathscinet  isi  elib
    9. Banwait B., Fite F., Loughran D., “Del Pezzo Surfaces Over Finite Fields and Their Frobenius Traces”, Math. Proc. Camb. Philos. Soc., 167:1 (2019), 35–60  crossref  mathscinet  isi
    10. Addington N., Hassett B., Tschinkel Yu., Varilly-Alvarado A., “Cubic Fourfolds Fibered in Sextic Del Pezzo Surfaces”, Am. J. Math., 141:6 (2019), 1479–1500  crossref  mathscinet  isi
    11. Biswas I., Dhillon A., Hoffmann N., “On the Essential Dimension of Coherent Sheaves”, J. Reine Angew. Math., 735 (2018), 265–285  crossref  mathscinet  zmath  isi
    12. Xie F., “Toric Surfaces Over An Arbitrary Field Feild”, Pac. J. Math., 296:2 (2018), 481–507  crossref  mathscinet  zmath  isi  scopus
    13. Auel A., Bernardara M., “Semiorthogonal Decompositions and Birational Geometry of Del Pezzo Surfaces Over Arbitrary Fields”, Proc. London Math. Soc., 117:1 (2018), 1–64  crossref  mathscinet  zmath  isi  scopus
    14. Merkurjev A.S., “Essential Dimension”, Bull. Amer. Math. Soc., 54:4 (2017), 635–661  crossref  mathscinet  zmath  isi  scopus
    15. Christian Liedtke, Simons Symposia, Geometry Over Nonclosed Fields, 2017, 157  crossref
    16. Merkurjev A.S., “Essential Dimension: a Survey”, Transform. Groups, 18:2 (2013), 415–481  crossref  mathscinet  zmath  isi  elib
    17. Reichstein Z., Vistoli A., “A Genericity Theorem for Algebraic Stacks and Essential Dimension of Hypersurfaces”, J. Eur. Math. Soc., 15:6 (2013), 1999–2026  crossref  mathscinet  zmath  isi
    18. Biswas I., Dhillon A., Lemire N., “The essential dimension of stacks of parabolic vector bundles over curves”, J. K-Theory, 10:3 (2012), 455–488  crossref  mathscinet  zmath  isi
    19. Wong W., “On the essential dimension of cyclic groups”, J. Algebra, 334:1 (2011), 285–294  crossref  mathscinet  zmath  isi
    20. Brosnan P., Reichstein Z., Vistoli A., “Essential dimension of moduli of curves and other algebraic stacks”, J. Eur. Math. Soc. (JEMS), 13:4 (2011), 1079–1112  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:411
    Full-text PDF :145
    References:41
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025