Abstract:
By definition, the “canonical dimension” of an algebraic group over a field is the maximum of the canonical dimensions of the principal homogeneous spaces under that group. Over a field of characteristic zero, it is proved that the canonical dimension of the projective linear group PGL6 is 3. We give two different proofs, both of which lean upon the birational classification of rational surfaces over a nonclosed field. One of the proofs involves taking a novel look at del Pezzo surfaces of degree 6.
Citation:
J.-L. Colliot-Thélène, N. A. Karpenko, A. S. Merkur'ev, “Rational surfaces and the canonical dimension of PGL6”, Algebra i Analiz, 19:5 (2007), 159–178; St. Petersburg Math. J., 19:5 (2008), 793–804
\Bibitem{ColKarMer07}
\by J.-L.~Colliot-Th\'el\`ene, N.~A.~Karpenko, A.~S.~Merkur'ev
\paper Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 5
\pages 159--178
\mathnet{http://mi.mathnet.ru/aa140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2381945}
\zmath{https://zbmath.org/?q=an:1206.14070}
\elib{https://elibrary.ru/item.asp?id=9577318}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 5
\pages 793--804
\crossref{https://doi.org/10.1090/S1061-0022-08-01021-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267421000007}
Linking options:
https://www.mathnet.ru/eng/aa140
https://www.mathnet.ru/eng/aa/v19/i5/p159
This publication is cited in the following 25 articles:
Akinari Hoshi, Hidetaka Kitayama, “Rationality Problem of Two-Dimensional Quasi-Monomial Group Actions”, Transformation Groups, 2024
Jérémy Blanc, Ivan Cheltsov, Alexander Duncan, Yuri Prokhorov, “Finite quasisimple groups acting on rationally connected threefolds”, Math. Proc. Camb. Philos. Soc., 174:3 (2023), 531–568
Andrey Trepalin, “Birational classification of pointless del Pezzo surfaces of degree 8”, Eur. J. Math., 9 (2023), 9
Kirill Zainoulline, “The Canonical Dimension of a Semisimple Group and the Unimodular Degree of a Root System”, International Mathematics Research Notices, 2023:4 (2023), 2834
Kresch A., Tschinkel Yu., “Brauer Groups of Involution Surface Bundles”, Pure Appl. Math. Q., 17:2, SI (2021), 649–669
Berg J., Varilly-Alvarado A., “Odd Order Obstructions to the Hasse Principle on General K3 Surfaces”, Math. Comput., 89:323 (2020), 1395–1416
Scavia F., “Essential Dimension and Genericity For Quiver Representations”, Doc. Math., 25 (2020), 329–364
A. Kresch, Yu. Tschinkel, “Models of Triple Covers”, Math. Notes, 105:5 (2019), 795–797
Banwait B., Fite F., Loughran D., “Del Pezzo Surfaces Over Finite Fields and Their Frobenius Traces”, Math. Proc. Camb. Philos. Soc., 167:1 (2019), 35–60
Addington N., Hassett B., Tschinkel Yu., Varilly-Alvarado A., “Cubic Fourfolds Fibered in Sextic Del Pezzo Surfaces”, Am. J. Math., 141:6 (2019), 1479–1500
Biswas I., Dhillon A., Hoffmann N., “On the Essential Dimension of Coherent Sheaves”, J. Reine Angew. Math., 735 (2018), 265–285
Xie F., “Toric Surfaces Over An Arbitrary Field Feild”, Pac. J. Math., 296:2 (2018), 481–507
Auel A., Bernardara M., “Semiorthogonal Decompositions and Birational Geometry of Del Pezzo Surfaces Over Arbitrary Fields”, Proc. London Math. Soc., 117:1 (2018), 1–64
Reichstein Z., Vistoli A., “A Genericity Theorem for Algebraic Stacks and Essential Dimension of Hypersurfaces”, J. Eur. Math. Soc., 15:6 (2013), 1999–2026
Biswas I., Dhillon A., Lemire N., “The essential dimension of stacks of parabolic vector bundles over curves”, J. K-Theory, 10:3 (2012), 455–488
Wong W., “On the essential dimension of cyclic groups”, J. Algebra, 334:1 (2011), 285–294
Brosnan P., Reichstein Z., Vistoli A., “Essential dimension of moduli of curves and other algebraic stacks”, J. Eur. Math. Soc. (JEMS), 13:4 (2011), 1079–1112