Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 5, Pages 159–178 (Mi aa140)  

This article is cited in 25 scientific papers (total in 25 papers)

Research Papers

Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$

J.-L. Colliot-Thélènea, N. A. Karpenkob, A. S. Merkur'evc

a CNRS, Mathématiques, Université Paris-Sud, Orsay, France
b Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie – Paris 6
c Department of Mathematics, University of California, Los Angeles, CA, USA
References:
Abstract: By definition, the “canonical dimension” of an algebraic group over a field is the maximum of the canonical dimensions of the principal homogeneous spaces under that group. Over a field of characteristic zero, it is proved that the canonical dimension of the projective linear group $\mathbf{PGL}_6$ is 3. We give two different proofs, both of which lean upon the birational classification of rational surfaces over a nonclosed field. One of the proofs involves taking a novel look at del Pezzo surfaces of degree 6.
Keywords: Algebraic group, projective linear group, rational surfaces, birational classification, canonical dimension.
Received: 29.01.2007
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 5, Pages 793–804
DOI: https://doi.org/10.1090/S1061-0022-08-01021-2
Bibliographic databases:
Document Type: Article
MSC: 14L10, 14L15
Language: Russian
Citation: J.-L. Colliot-Thélène, N. A. Karpenko, A. S. Merkur'ev, “Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$”, Algebra i Analiz, 19:5 (2007), 159–178; St. Petersburg Math. J., 19:5 (2008), 793–804
Citation in format AMSBIB
\Bibitem{ColKarMer07}
\by J.-L.~Colliot-Th\'el\`ene, N.~A.~Karpenko, A.~S.~Merkur'ev
\paper Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 5
\pages 159--178
\mathnet{http://mi.mathnet.ru/aa140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2381945}
\zmath{https://zbmath.org/?q=an:1206.14070}
\elib{https://elibrary.ru/item.asp?id=9577318}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 5
\pages 793--804
\crossref{https://doi.org/10.1090/S1061-0022-08-01021-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267421000007}
Linking options:
  • https://www.mathnet.ru/eng/aa140
  • https://www.mathnet.ru/eng/aa/v19/i5/p159
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :136
    References:36
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024