Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2014, Volume 26, Issue 3, Pages 131–158 (Mi aa1386)  

Research Papers

Morse–Novikov theory, Heegaard splittings, and closed orbits of gradient flows

H. Godaa, H. Matsudab, A. Pajitnovc

a Department of Mathematics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
b Department of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan
c Laboratoire de Mathématiques, Jean-Leray UMR 6629, Université de Nantes, Faculté des Sciences, 2, rue de la Houssinière, 44072, Nantes, Cedex, France
References:
Abstract: The work of Donaldson and Mark made the structure of the Seiberg–Witten invariant of $3$-manifolds clear. It corresponds to certain torsion type invariants counting flow lines and closed orbits of a gradient flow of a circle-valued Morse map on a $3$-manifold. In the paper, these invariants are studied by using the Morse–Novikov theory and Heegaard splitting for sutured manifolds, and detailed computations are made for knot complements.
Keywords: oriented knot, sutured manifold, Morse map, Novikov complex, half-transversal gradients, Lefschetz zeta function.
Received: 02.03.2013
English version:
St. Petersburg Mathematical Journal, 2015, Volume 26, Issue 3, Pages 441–461
DOI: https://doi.org/10.1090/S1061-0022-2015-01345-9
Bibliographic databases:
Document Type: Article
Language: English
Citation: H. Goda, H. Matsuda, A. Pajitnov, “Morse–Novikov theory, Heegaard splittings, and closed orbits of gradient flows”, Algebra i Analiz, 26:3 (2014), 131–158; St. Petersburg Math. J., 26:3 (2015), 441–461
Citation in format AMSBIB
\Bibitem{GodMatPaj14}
\by H.~Goda, H.~Matsuda, A.~Pajitnov
\paper Morse--Novikov theory, Heegaard splittings, and closed orbits of gradient flows
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 3
\pages 131--158
\mathnet{http://mi.mathnet.ru/aa1386}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289179}
\elib{https://elibrary.ru/item.asp?id=22834088}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 3
\pages 441--461
\crossref{https://doi.org/10.1090/S1061-0022-2015-01345-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357043800003}
Linking options:
  • https://www.mathnet.ru/eng/aa1386
  • https://www.mathnet.ru/eng/aa/v26/i3/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025