Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 5, Pages 124–136 (Mi aa138)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Tame and purely wild extensions of valued fields

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (178 kB) Citations (5)
References:
Abstract: A systematic and concise exposition of the basic results concerning two complementary classes (tame and purely wild) of extensions of (Henselian) valued fields is given. These notions proved to be quite useful both for the general theory and for the model theory of such fields. Along with new results, new proofs of old results are presented. Thus, in the proof of the well-known Pank theorem on the existence of a complement to the ramification group in the absolute Galois group of a Henselian valued field, the properties of maximal immediate extensions are employed instead of cohomological methods.
Keywords: Henselian valued fields, valuation ring, valuation group, ramified extension, totally unramified extension.
Received: 20.04.2007
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 5, Pages 765–773
DOI: https://doi.org/10.1090/S1061-0022-08-01019-4
Bibliographic databases:
Document Type: Article
MSC: 12F15
Language: Russian
Citation: Yu. L. Ershov, “Tame and purely wild extensions of valued fields”, Algebra i Analiz, 19:5 (2007), 124–136; St. Petersburg Math. J., 19:5 (2008), 765–773
Citation in format AMSBIB
\Bibitem{Ers07}
\by Yu.~L.~Ershov
\paper Tame and purely wild extensions of valued fields
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 5
\pages 124--136
\mathnet{http://mi.mathnet.ru/aa138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2381943}
\zmath{https://zbmath.org/?q=an:1206.12005}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 5
\pages 765--773
\crossref{https://doi.org/10.1090/S1061-0022-08-01019-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267421000005}
Linking options:
  • https://www.mathnet.ru/eng/aa138
  • https://www.mathnet.ru/eng/aa/v19/i5/p124
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :164
    References:92
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024